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Introduction 

 Exploit mitigations such as DEP and ASLR do not 

prevent exploitation in every case 

 JIT spraying, memory leaks, etc. 

 Privilege isolation is becoming an important 

component in confining application vulnerabilities 

 Browsers and office applications employ “sandboxed” 

render processes 

 Relies on (security) features of the operating system 

 In turn, this has motivated attackers to focus their 

efforts on privilege escalation attacks 

 Arbitrary ring0 code execution → OS security undermined 



The Kernel Pool 

 Resource for dynamically allocating memory 

 Shared between all kernel modules and drivers 

 Analogous to the user-mode heap 

 Each pool is defined by its own structure 

 Maintains lists of free pool chunks 

 Highly optimized for performance 

 No kernel pool cookie or pool header obfuscation 

 The kernel executive exports dedicated functions for 

handling pool memory 

 ExAllocatePool* and ExFreePool* (discussed later) 



Kernel Pool Exploitation 

 An attacker’s ability to leverage pool corruption 

vulnerabilities to execute arbitrary code in ring 0 

 Similar to traditional heap exploitation 

 Kernel pool exploitation requires careful modification 

of kernel pool structures 

 Access violations are likely to end up with a bug check 

(BSOD) 

 Up until Windows 7, kernel pool overflows could be 

generically exploited using write-4 techniques 

 SoBeIt[2005] 

 Kortchinsky[2008] 

 



Previous Work 

 Primarily focused on XP/2003 platforms 

 How To Exploit Windows Kernel Memory Pool 

 Presented by SoBeIt at XCON 2005 

 Proposed two write-4 exploit methods for overflows 

 Real World Kernel Pool Exploitation 

 Presented by Kostya Kortchinsky at SyScan 2008 

 Discussed four write-4 exploitation techniques 

 Demonstrated practical exploitation of MS08-001 

 All the above exploitation techniques were 

addressed in Windows 7 (Beck[2009]) 



Contributions 

 Elaborate on the internal structures and changes 

made to the Windows 7 (and Vista) kernel pool 

 Identify weaknesses in the Windows 7 kernel pool 

and show how an attacker may leverage these to 

exploit pool corruption vulnerabilities 

 Propose ways to thwart the discussed attacks and 

further harden the kernel pool 



Kernel Pool Internals 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Kernel Pool Fundamentals 

 Kernel pools are divided into types 

 Defined in the POOL_TYPE enum 

 Non-Paged Pools, Paged Pools, Session Pools, etc. 

 Each kernel pool is defined by a pool descriptor 

 Defined by the POOL_DESCRIPTOR structure 

 Tracks the number of allocs/frees, pages in use, etc. 

 Maintains lists of free pool chunks 

 The initial descriptors for paged and non-paged 

pools are defined in the nt!PoolVector array 

 Each index points to an array of one or more descriptors 



Kernel Pool Descriptor (Win7 RTM x86) 

 kd> dt nt!_POOL_DESCRIPTOR 
 +0x000 PoolType  : _POOL_TYPE 

 +0x004 PagedLock : _KGUARDED_MUTEX 

 +0x004 NonPagedLock : Uint4B 

 +0x040 RunningAllocs : Int4B 

 +0x044 RunningDeAllocs : Int4B 

 +0x048 TotalBigPages : Int4B 

 +0x04c ThreadsProcessingDeferrals : Int4B 

 +0x050 TotalBytes  : Uint4B 

 +0x080 PoolIndex  : Uint4B 

 +0x0c0 TotalPages : Int4B 

 +0x100 PendingFrees : Ptr32 Ptr32 Void 

 +0x104 PendingFreeDepth: Int4B 

 +0x140 ListHeads  : [512] _LIST_ENTRY 



Non-Paged Pool 

 Non-pagable system memory 
 Guaranteed to reside in physical memory at all times 

 Number of pools stored in 
nt!ExpNumberOfNonPagedPools 

 On uniprocessor systems, the first index of the 
nt!PoolVector array points to the non-paged pool 
descriptor 

 kd> dt nt!_POOL_DESCRIPTOR poi(nt!PoolVector) 

 On multiprocessor systems, each node has its own 
non-paged pool descriptor  
 Pointers stored in nt!ExpNonPagedPoolDescriptor 

array 



Paged Pool 

 Pageable system memory 
 Can only be accessed at IRQL < DPC/Dispatch level 

 Number of paged pools defined by 
nt!ExpNumberOfPagedPools 

 On uniprocessor systems, four (4) paged pool 
descriptors are defined 

 Index 1 through 4 in nt!ExpPagedPoolDescriptor 

 On multiprocessor systems, one (1) paged pool 
descriptor is defined per node 

 One additional paged pool descriptor is defined for 
prototype pools / full page allocations 
 Index 0 in nt!ExpPagedPoolDescriptor 



Session Paged Pool 

 Pageable system memory for session space 

 E.g. Unique to each logged in user 

 Initialized in nt!MiInitializeSessionPool 

 On Vista, the pool descriptor pointer is stored in 

nt!ExpSessionPoolDescriptor (session space) 

 On Windows 7, a pointer to the pool descriptor from 

the current thread is used 

 KTHREAD->Process->Session.PagedPool 

 Non-paged session allocations use the global non-

paged pools 

 



Pool Descriptor Free Lists (x86) 

 Each pool descriptor has a 

ListHeads array of 512 doubly-

linked lists of free chunks of the 

same size 

 8 byte granularity 

 Used for allocations up to 4080 

bytes 

 Free chunks are indexed into the 

ListHeads array by block size  

 BlockSize: (NumBytes+0xF) >> 3 

 Each pool chunk is preceded by 

an 8-byte pool header 

0 

1 

2 

3 

4 

.. 

.. 

.. 

.. 

511 

8 bytes 

24 bytes 

8 bytes 

PoolDescriptor.ListHeads 

24 bytes data + 

8 byte header 

4080 bytes 



Kernel Pool Header (x86) 

 kd> dt nt!_POOL_HEADER 

 +0x000 PreviousSize : Pos 0, 9 Bits 

 +0x000 PoolIndex  : Pos 9, 7 Bits 

 +0x002 BlockSize  : Pos 0, 9 Bits 

 +0x002 PoolType  : Pos 9, 7 Bits 

 +0x004 PoolTag  : Uint4B 

 PreviousSize: BlockSize of the preceding chunk 

 PoolIndex: Index into the associated pool descriptor array 

 BlockSize: (NumberOfBytes+0xF) >> 3 

 PoolType: Free=0, Allocated=(PoolType|2) 

 PoolTag: 4 printable characters identifying the code 
responsible for the allocation 

 



Kernel Pool Header (x64) 

 kd> dt nt!_POOL_HEADER 

 +0x000 PreviousSize : Pos 0, 8 Bits 

 +0x000 PoolIndex : Pos 8, 8 Bits 

 +0x000 BlockSize : Pos 16, 8 Bits 

 +0x000 PoolType : Pos 24, 8 Bits 

 +0x004 PoolTag  : Uint4B 

 +0x008 ProcessBilled : Ptr64 _EPROCESS 

 BlockSize: (NumberOfBytes+0x1F) >> 4 

 256 ListHeads entries due to 16 byte block size 

 ProcessBilled: Pointer to process object charged for 

the pool allocation (used in quota management) 

 



Free Pool Chunks 

 If a pool chunk is freed to a pool descriptor ListHeads list, 

the header is followed by a LINK_ENTRY structure 

 Pointed to by the ListHeads doubly-linked list 

 kd> dt nt!_LIST_ENTRY 

+0x000 Flink : Ptr32 _LIST_ENTRY 

+0x004 Blink : Ptr32 _LIST_ENTRY 

.. 

n 

Header Header 

Flink 

Blink 

.. 

Flink 

Blink 

Flink 

Blink 

PoolDescriptor.ListHeads 

Blocksize n 

Free chunks 



Lookaside Lists 

 Kernel uses lookaside lists for faster 

allocation/deallocation of small pool chunks 

 Singly-linked LIFO lists 

 Optimized for performance – e.g. no checks 

 Separate per-processor lookaside lists for pagable 

and non-pagable allocations 

 Defined in the Processor Control Block (KPRCB) 

 Maximum BlockSize being 0x20 (256 bytes) 

 8 byte granularity, hence 32 lookaside lists per type 

 Each lookaside list is defined by a 

GENERAL_LOOKASIDE_POOL structure 



General Lookaside (Win7 RTM x86) 

 kd> dt _GENERAL_LOOKASIDE_POOL 
 +0x000 ListHead  : _SLIST_HEADER 

 +0x000 SingleListHead : _SINGLE_LIST_ENTRY 

 +0x008 Depth  : Uint2B 

 +0x00a MaximumDepth : Uint2B 

 +0x00c TotalAllocates : Uint4B 

 +0x010 AllocateMisses : Uint4B 

 +0x010 AllocateHits : Uint4B 

 +0x014 TotalFrees : Uint4B 

 +0x018 FreeMisses : Uint4B 

 +0x018 FreeHits  : Uint4B 

 +0x01c Type  : _POOL_TYPE 

 +0x020 Tag  : Uint4B 

 +0x024 Size  : Uint4B 

 […] 



 

 

 

 

Lookaside Lists (Per-Processor) 

PPNPagedLookasideList[32] 

PPPagedLookasideList[32] 

PPNPagedLookasideList[0] 

PPNPagedLookasideList[2] 

PPNPagedLookasideList[3] 

PPNPagedLookasideList[n] 

PPNPagedLookasideList[1] 

ListHead 

Next 

Depth 

 

 

 

 

PPNPagedLookasideList[31] 

Header Header 

Processor Control Block 

KPRCB 

 

 

KPCR 

Next Next 

Free lookaside chunks 

 

 

 

Per-Processor Non-Paged 

Lookaside Lists 

Each per-processor lookaside list entry 

(GENERAL_LOOKASIDE_POOL) is 

0x48 bytes in size 

Processor Control Region 

(pointed to by FS segment selector) 



Lookaside Lists (Session) 

 Separate per-session lookaside lists for pagable 

allocations 

 Defined in session space (nt!ExpSessionPoolLookaside) 

 Maximum BlockSize being 0x19 (200 bytes) 

 Uses the same structure (with padding) as per-processor lists 

 All processors use the same session lookaside lists 

 Non-paged session allocations use the per-processor 

non-paged lookaside list 

 Lookaside lists are disabled if hot/cold separation is used 

 nt!ExpPoolFlags & 0x100 

 Used during system boot to increase speed and reduce the 

memory footprint 



 

 

 

 

Lookaside Lists (Session) 

Lookaside[25] 

Lookaside[0] 

Lookaside[2] 

Lookaside[3] 

Lookaside[n] 

Lookaside[1] 

ListHead 

Next 

Depth 

 

 

 

 

Lookaside[24] 

Header Header 

Session Space 

MM_SESSION_SPACE 

 

(nt!MmSessionSpace) 

 

 

Next Next 

Free lookaside chunks 

 

 

 

Session Paged 

Lookaside Lists 

Each per-processor lookaside list entry 

(GENERAL_LOOKASIDE) is 0x80 

bytes in size 



Large Pool Allocations 

 Allocations greater than 0xff0 (4080) bytes 

 Handled by the function nt!ExpAllocateBigPool 

 Internally calls nt!MiAllocatePoolPages 

 Requested size is rounded up to the nearest page size 

 Excess bytes are put back at the end of the appropriate 

pool descriptor ListHeads list 

 Each node (e.g. processor) has 4 singly-linked 

lookaside lists for big pool allocations 

 1 paged for allocations of a single page 

 3 non-paged for allocations of page count 1, 2, and 3 

 Defined in KNODE (KPCR.PrcbData.ParentNode) 



Large Pool Allocations 

 If lookaside lists cannot be used, an allocation 

bitmap is used to obtain the requested pool pages 

 Array of bits that indicate which memory pages are in use 

 Defined by the RTL_BITMAP structure 

 The bitmap is searched for the first index that holds 

the requested number of unused pages 

 Bitmaps are defined for every major pool type with 

its own dedicated memory 

 E.g. nt!MiNonPagedPoolBitMap 

 The array of bits is located at the beginning of the 

pool memory range 



Bitmap Search (Simplified) 

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 

2. RtlFindClearBits(...) 

1. MiAllocatePoolPages(NonPagedPool, 0x8000) 

MiNonPagedPoolBitMap 

3. RtlFindAndSetClearBits(...) 

4. PageAddress = MiNonPagedPoolStartAligned + ( BitOffset << 0xC ) 



Allocation Algorithm 

 The kernel exports several allocation functions for 

kernel modules and drivers to use 

 All exported kernel pool allocation routines are 

essentially wrappers for ExAllocatePoolWithTag 

 The allocation algorithm returns a free chunk by 

checking with the following (in order) 

 Lookaside list(s) 

 ListHeads list(s) 

 Pool page allocator 

 Windows 7 performs safe unlinking when pulling a 

chunk from a free list (Beck[2009]) 



 

 

 

Pool Header 

Safe Pool Unlinking 

Flink 

Blink 

 

 

 

Pool Header 

0x8080BBB0 

0x8080AAA0 

 

 

 

Pool Header 

Flink 

Blink 

 

 

 

Pool Header 

 

 

 

 

 

 

Pool Header 

Flink 

0x8080AAA0 

0x8080BBB0 

Blink 

1. Chunk to be unlinked ... 

2. Does next chunk’s 

Blink point at the chunk 

being unlinked ? 

3. Does previous chunk’s 

Flink point at the chunk 

being unlinked ? 



ExAllocatePoolWithTag (1/2) 

 PVOID ExAllocatePoolWithTag(POOL_TYPE 

PoolType, SIZE_T NumberOfBytes, ULONG Tag) 

 If NumberOfBytes > 0xff0 

 Call nt!ExpAllocateBigPool 

 If PagedPool requested 

 If (PoolType & SessionPoolMask) and BlockSize <= 0x19 
 Try the session paged lookaside list 

 Return on success 

 Else If BlockSize <= 0x20 
 Try the per-processor paged lookaside list 

 Return on success 

 Lock (session) paged pool descriptor (round robin) 

 



ExAllocatePoolWithTag (2/2) 

 Else (NonPagedPool requested) 
 If BlockSize <= 0x20 

 Try the per-processor non-paged lookaside list 

 Return on success 

 Lock non-paged pool descriptor (local node) 

 Use ListHeads of currently locked pool 

 For n in range(BlockSize,512) 

 If ListHeads[n] is empty, try next BlockSize 

 Safe unlink first entry and split if larger than needed 

 Return on success 

 If failed, expand the pool by adding a page 

 Call nt!MiAllocatePoolPages 

 Split entry and return on success 



ExAllocatePoolWithTag 



Splitting Pool Chunks 

 If a chunk larger than the size requested is returned 

from ListHeads[n], the chunk is split 

 If chunk is page aligned, the requested size is allocated 

from the front of the chunk 

 If chunk is not page aligned, the requested size is 

allocated at the end of the chunk 

 The remaining fragment of the split chunk is put at 

the tail of the proper ListHeads[n] list 



Free Chunk 

Splitting Pool Chunks 

Free Pool 

Page 

1st alloc 

Free Chunk 

1st alloc 

3rd alloc 

PreviousSize == 0 : 

Allocate chunk in the front 

PreviousSize != 0 : 

Allocate chunk at the end 

4th alloc 

2nd alloc 



Free Algorithm 

 The free algorithm inspects the pool header of the 

chunk to be freed and frees it to the appropriate list 

 Implemented by ExFreePoolWithTag 

 Bordering free chunks may be merged with the freed 

chunk to reduce fragmentation 

 Windows 7 uses safe unlinking in the merging process 



ExFreePoolWithTag (1/2) 

 VOID ExFreePoolWithTag(PVOID Address, ULONG Tag) 

 If Address (chunk) is page aligned 

 Call nt!MiFreePoolPages 

 If Chunk->BlockSize != NextChunk->PreviousSize 

 BugCheckEx(BAD_POOL_HEADER) 

 If (PoolType & PagedPoolSession) and BlockSize <= 0x19 

 Put in session pool lookaside list 

 Else If BlockSize <= 0x20 and pool is local to processor 

 If (PoolType & PagedPool) 

 Put in per-processor paged lookaside list 

 Else (NonPagedPool) 

 Put in per-processor non-paged lookaside list 

 Return on sucess 



ExFreePoolWithTag (2/2) 

 If the DELAY_FREE pool flag is set 

 If pending frees >= 0x20 

 Call nt!ExDeferredFreePool 

 Add to front of pending frees list (singly-linked) 

 Else 

 If next chunk is free and not page aligned 

 Safe unlink and merge with current chunk 

 If previous chunk is free 

 Safe unlink and merge with current chunk 

 If resulting chunk is a full page 

 Call nt!MiFreePoolPages 

 Else 

 Add to front of appropriate ListHeads list 



ExFreePoolWithTag 



Merging Pool Chunks 

Pool Header 

(free) 

Pool Header 

(busy) 

Pool Header 

(free) 

Pool Header 

(free) 

Pool Header 

(busy) 
unlinked chunk 

Chunk to be freed 

Next chunk unlinked 

Merge with next 

Pool Header 

(busy) 
BlockSize updated unlinked chunk 

Pool Header 

(free) 
BlockSize updated 

Previous chunk unlinked 

Merge with previous Marked as free and returned 



Delayed Pool Frees 

 A performance optimization that frees several pool 

allocations at once to amortize pool acquisition/release 

 Briefly mentioned in mxatone[2008] 

 Enabled when MmNumberOfPhysicalPages >= 0x1fc00 

 Equivalent to 508 MBs of RAM on IA-32 and AMD64 

 nt!ExpPoolFlags & 0x200 

 Each call to ExFreePoolWithTag appends a pool chunk 

to a singly-linked deferred free list specific to each pool 

descriptor 

 Current number of entries is given by PendingFreeDepth 

 The list is processed by the function ExDeferredFreePool if it 

has 32 or more entries 



ExDeferredFreePool 

 VOID ExDeferredFreePool(PPOOL_DESCRIPTOR 
PoolDescriptor, BOOLEAN bMultiThreaded) 

 For each entry on pending frees list 

 If next chunk is free and not page aligned 

 Safe unlink and merge with current chunk 

 If previous chunk is free 

 Safe unlink and merge with current chunk 

 If resulting chunk is a full page 

 Add to full page list 

 Else 

 Add to front of appropriate ListHeads list 

 For each page in full page list 

 Call nt!MiFreePoolPages 

 



Free Pool Chunk Ordering 

 Frees to the lookaside and pool descriptor ListHeads 

are always put in the front of the appropriate list 

 Exceptions are remaining fragments of split blocks which 

are put at the tail of the list 

 Blocks are split when the pool allocator returns chunks 

larger than the requested size 

 Full pages split in ExpBigPoolAllocation 

 ListHeads[n] entries split in ExAllocatePoolWithTag 

 Allocations are always made from the most recently 

used blocks, from the front of the appropriate list 

 Attempts to use the CPU cache as much as possible 



Kernel Pool Attacks 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Overview 

 Traditional ListEntry Attacks (< Windows 7) 

 ListEntry Flink Overwrite 

 Lookaside Pointer Overwrite 

 PoolIndex Overwrite 

 PendingFrees Pointer Overwrite 

 Quota Process Pointer Overwrite 



ListEntry Overwrite (< Windows 7) 

 All free list (ListHeads) pool chunks are linked 

together by LIST_ENTRY structures 

 Vista and former versions do not validate the 

structures’ forward and backward pointers 

 A ListEntry overwrite may be leveraged to trigger a 

write-4 in the following situations 

 Unlink in merge with next pool chunk 

 Unlink in merge with previous pool chunk 

 Unlink in allocation from ListHeads[n] free list 

 Discussed in Kortchinsky[2008] and SoBeIt[2005] 



Pool Header 

ListEntry Overwrite (Merge With Next) 
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Pool Header 

(free) 
unlinked chunk  write-4 

When the overflowing chunk is freed, the next 

bordering chunk is merged and unlinked 

PoolType set to 0 (free) 

Chunk size is updated to 

accomodate the merged chunk 



Pool Header 

ListEntry Overwrite (Merge With Previous) 

Pool Header 

(busy) 

Pool Header 
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(busy) Pool overflow 
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Pool Header 
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PreviousSize updated for 

fake previous header 

Pool Header 

(busy) 
(free) unlinked chunk  write-4 

Use overflow to create a fake pool 

header for merging freed chunk 

When the corrupted chunk is freed, the fake previous 

chunk is unlinked before being merged 

PoolType set to 0 (free) 



ListEntry Flink Overwrite 

 Windows 7 uses safe unlinking to validate the 

LIST_ENTRY pointers of a chunk being unlinked 

 In allocating a pool chunk from a ListHeads free list, 

the kernel fails to properly validate its forward link 

 The algorithm validates the ListHeads[n] LIST_ENTRY 

structure instead 

 Overwriting the forward link of a free chunk may 

cause the address of ListHeads[n] to be written to an 

attacker controlled address 

 Target ListHeads[n] list must hold at least two free chunks 



The Not So Safe Unlink 
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Pool Descriptor ListHeads 

ListHeads[n].Blink 
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Chunk to be unlinked 

After unlink 

• FakeEntry.Blink = ListHeads[n] 

• ListHeads[n].Flink = FakeEntry 

NextEntry.Blink 

(validated in safe unlink) 

PreviousEntry.Flink 

(validated in safe unlink) 



ListEntry Flink Overwrite 

 In the following output, the address of ListHeads[n] 

(esi) in the pool descriptor is written to an attacker 

controlled address (eax) 

 Pointers are not sufficiently validated when allocating 

a pool chunk from the free list 

eax=80808080 ebx=829848c0 ecx=8cc15768 edx=8cc43298 esi=82984a18 edi=829848c4 

eip=8296f067 esp=82974c00 ebp=82974c48 iopl=0         nv up ei pl zr na pe nc 

cs=0008  ss=0010  ds=0023  es=0023  fs=0030  gs=0000             efl=00010246 

 

nt!ExAllocatePoolWithTag+0x4b7: 

8296f067 897004          mov     dword ptr [eax+4],esi ds:0023:80808084=???????? 



ListEntry Flink Overwrite 

 After unlink, the attacker may control the address of 

the next allocated entry 

 ListHeads[n].Flink = FakeEntry 

 FakeEntry can be safely unlinked as its blink was 

updated to point back to ListHeads[n] 

 FakeEntry.Blink = ListHeads[n] 

 If a user-mode pointer is used in the overwrite, the 

attacker could fully control the contents of the next 

allocation 



ListEntry Flink Overwrite 
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Flink 

Blink 

Pool Header 

Flink FakeEntry 

Blink 

Pool Descriptor ListHeads 

ListHeads[n].Blink 

(validated in safe unlink) 

ListHeads[n].Flink 

(validated in safe unlink) 

Index for BlockSize n, 

Flink points to first 

chunk to be allocated 

Chunk to be 

unlinked 

FakeEntry.Blink 

(updated in previous unlink 

and validated in safe unlink) 

PreviousEntry.Flink 

(validated in safe unlink) 

Next 

FakeEntry 



Lookaside Pointer Overwrite 

 Pool chunks and pool pages on lookaside lists are 

singly-linked 

 Each entry holds a pointer to the next entry 

 Overwriting a next pointer may cause the kernel pool 

allocator to return an attacker controlled address 

 A pool chunk is freed to a lookaside list if the 

following hold 

 BlockSize <= 0x20 for paged/non-paged pool chunks 

 BlockSize <= 0x19 for paged session pool chunks 

 Lookaside list for target BlockSize is not full 

 Hot/cold page separation is not used 

 



Lookaside Pointer Overwrite (Chunks) 
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Next 

Depth 

PPNPagedLookasideList[2] 

After an allocation has been 

made for BlockSize 2, the 

Next pointer points to the 

attacker supplied address  

arbitrary 

address 



Lookaside Pointer Overwrite (Pages) 

 A pool page is freed to a lookaside list if the following 

hold 

 NumberOfPages = 1 for paged pool pages 

 NumberOfPages <= 3 for non-paged pool pages 

 Lookaside list for target page count is not full 

 Size limit determined by physical page count in system 

 A pointer overwrite of lookaside pages requires at 

most a pointer-wide overflow 

 No pool headers on free pool pages! 

 Partial pointer overwrites may also be sufficient 
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Page-aligned pointer to 

next lookaside pool page 

PagedPoolSListHead 

NonPagedPool 

SListHead[0] 

Next 

Depth 

NonPagedPoolSListHead[1] 

NonPagedPoolSListHead[2] 

arbitrary 

address 

MiAllocatePoolPages 

returns a page with an 

address we control 

arbitrary 

address 



PendingFrees Pointer Overwrite 

 Pool chunks waiting to be freed are stored in the 

pool descriptor deferred free list 

 Singly-linked (similar to lookaside list) 

 Overwriting a chunk’s next pointer will cause an 

arbitrary address to be freed 

 Inserted in the front of ListHeads[n] 

 Next pointer must be NULL to end the linked list 

 In freeing a user-mode address, the attacker may 

control the contents of subsequent allocations 

 Must be made from the same process context 



PendingFrees Pointer Overwrite 

0x0 PoolType 

0x4 PagedLock 

… 

0x100 PendingFrees 

0x104 PendingFreesDepth 

0x140 ListHeads[512] 

0x140

+ N*8 

Attacker controlled address is 

returned in requesting memory 

from ListHeads[n] 

Paged Pool Descriptor 
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Pool Header 
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PendingFrees Pointer Overwrite Steps 

 Free a chunk to the deferred free list 

 Overwrite the chunk’s next pointer 

 Or any of the deferred free list entries (32 in total) 

 Trigger processing of the deferred free list 

 Attacker controlled pointer freed to designated free list 

 Force allocation of the controlled list entry 

 Allocator returns user-mode address 

 Corrupt allocated entry 

 Trigger use of corrupted entry 



PoolIndex Overwrite 

 A pool chunk’s PoolIndex denotes an index into the 

associated pool descriptor array 

 For paged pools, PoolIndex always denotes an index 

into the nt!ExpPagedPoolDescriptor array 

 On checked builds, the index value is validated in a 

compare against nt!ExpNumberOfPagedPools 

 On free (retail) builds, the index is not validated 

 For non-paged pools, PoolIndex denotes an index 

into nt!ExpNonPagedPoolDescriptor when there 

are multiple NUMA nodes 

 PoolIndex is not validated on free builds 



Pool Header 

PoolIndex Overwrite 

Pool Header 
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Chunk data Pool Header 

BlockSize of the 

previous chunk 

Pool descriptor 

array index 

BlockSize of 

the next chunk 

Pool type 

Pool overflow 

Pool chunk in which 

the overflow occurs Chunk that is corrupted 



PoolIndex Overwrite 

 A malformed PoolIndex may cause an allocated pool 

chunk to be freed to a null-pointer pool descriptor 

 Controllable with null page allocation 

 Requires a 2 byte pool overflow 

 When linking in to a controlled pool descriptor, the 

attacker can write the address of the freed chunk to 

an arbitrary location 

 No checks performed when “linking in” 

 All ListHeads entries are fully controlled 

 ListHeads[n].Flink->Blink = FreedChunk 

 



PoolIndex Overwrite 
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Chunk data 

0x0 PoolType 

0x4 PagedLock 

… 

0x100 PendingFrees 

0x104 PendingFreesDepth 

0x140 ListHeads[512] 

Virtual Address Index 

Flink 

Pool Header 

Blink 

0x140

+ N*8 

Flink 

Attacker-controlled 

pointers 
Updated with pointer 

to freed chunk  

The virtual null page is 

mapped to control the 

contents of the «null» 

paged pool descriptor 

Freed pool chunk 

nt!ExpPagedPoolDescriptor 

NULL Paged Pool Descriptor 

PoolIndex set to 5 

Blink 



PoolIndex Overwrite + Coalescing 

 If delayed frees are not used, the PoolIndex attack 

writes a kernel pool address to an arbitrary location 

 ListHeads[n].Flink->Blink = FreedChunk 

 We can extend this to an arbitrary write of a null-

page address by coalescing the freed (corrupted) 

chunk 

 E.g. free an adjacent pool chunk 

 This will cause the initial freed chunk to be unlinked 

from the free list and update the Blink with a pointer 

back to the ListHeads entry (null-page) 



PoolIndex Overwrite + Coalescing 

HalDispatchTable 

Blink 

0x140

+ N*8 

Target Address 

(e.g. HalDispatchTable) 

Pool Header 

Flink 

«Blink» points back to 

kernel pool address 

Null-page pool descriptor 

ListHeads entry before 1st free 

+0 

xHalQuerySystemInformation 

Corrupted Chunk 

Blink 

0x140

+ N*8 

Corrupted pool chunk is freed 

+0 

Corrupted Chunk Blink 

Pointer updated with null-

page address after unlink 

HalDispatchTable 

Blink 

0x140

+ N*8 

Corrupted pool chunk is 

coalesced with adjacent free 

+0 

ListHeads Entry 



PoolIndex Overwrite (Delayed Frees) 

 If delayed pool frees is enabled, the same effect can 

be achieved by creating a fake PendingFrees list 

 First entry should point to a user crafted chunk 

 The PendingFreeDepth field of the pool descriptor 

should be >= 0x20 to trigger processing of the 

PendingFrees list 

 The free algorithm of ExDeferredFreePool does 

basic validation on the crafted chunks 

 Coalescing / safe unlinking 

 The freed chunk should have busy bordering chunks 



PoolIndex Overwrite (Delayed Frees) 
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Data 

0x0 PoolType 

0x4 PagedLock 

… 

0x100 PendingFrees 

0x104 PendingFreesDepth 

0x140 ListHeads[512] 

Virtual 

Address 

Index 

0x140

+ N*8 

Freed chunks are put in front of the 

linked list, hence the blink of the block 

previously in front is updated 

The virtual null page is 

mapped to control the 

contents of the «null» 

paged pool descriptor 

15 

Freed pool chunk 
NULL Paged Pool Descriptor 

 

 

Data 

Pool Header 

Next 

nt!ExpPagedPoolDescriptor 

1st chunk to be linked 

into ListHeads[n] 

Flink 

Blink 

8b1ac000 

8b1ad140 

8b1ae280 

8b1af3c0 

8b1b0500 

0 

0 

0 

Pool Header 

Flink 

Blink 

Pool Header 

Flink 

Blink 

arbitrary 

Put in front of ListHeads[n] 



PoolIndex Overwrite (Example) 

 In controlling the PendingFrees list, a user-controlled 

virtual address (eax) can be written to an arbitrary 

destination address (esi) 

 In turn, this can be used to corrupt function pointers 

used by the kernel to execute arbitrary code 

eax=20000008 ebx=000001ff ecx=000001ff edx=00000538 esi=80808080 edi=00000000 

eip=8293c943 esp=9c05fb20 ebp=9c05fb58 iopl=0         nv up ei pl nz na po nc 

cs=0008  ss=0010  ds=0023  es=0023  fs=0030  gs=0000             efl=00010202 

 

nt!ExDeferredFreePool+0x2e3: 

8293c943 894604          mov     dword ptr [esi+4],eax ds:0023:80808084=???????? 



Quota Process Pointer Overwrite 

 Quota charged pool allocations store a pointer to the 

associated process object 

 ExAllocatePoolWithQuotaTag(…) 

 x86: last four bytes of pool body 

 x64: last eight bytes of pool header 

 Upon freeing a pool chunk, the quota is released and 

the process object is dereferenced 

 The object’s reference count is decremented 

 Overwriting the process object pointer could allow an 

attacker to free an in-use process object or corrupt 

arbitrary memory 



Quota Process Pointer Overwrite 

Pool Header 

Pool Header 

P
re

v
io

u
s
S

iz
e
 

P
o
o
lI
n
d
e
x
 

B
lo

c
k
S

iz
e

 

P
o
o
lT

y
p
e

 

Process 

Pointer 

x64 

Pool Header 

Pool Header 

P
re

v
io

u
s
S

iz
e
 

P
o
o
lI
n
d
e
x
 

B
lo

c
k
S

iz
e

 

P
o
o
lT

y
p
e
 

x86 
Process pointer stored in the pool header or at the end 

of the pool body depending on platform architecture 

PoolType & 0x8 

(quota used) 

Pool overflow 
Pool 

Header 

Process 

Pointer 
Pool overflow 

Pool 

Header 



Quota Process Pointer Overwrite 

 Quota information is stored in a 

EPROCESS_QUOTA_BLOCK structure 

 Pointed to by the EPROCESS object 

 Provides information on limits and how much quota is 

being used 

 On free, the charged quota is returned by subtracting 

the size of the allocation from the quota used 

 An attacker controlling the quota block pointer could 

decrement the value of an arbitrary address 

 More on this later! 



Arbitrary Pointer Decrement 

Pool Header 
Process 

Pointer 
Pool overflow Pool Header 

EPROCESS EPROCESS_QUOTA_BLOCK 

Address of executive process object 

controlled by the attacker 

Usage counter decremented 

on free, for which the address 

is controlled by the attacker 

Quota charged pool allocation (x86) 



Summary of Attacks 

 Corruption of busy pool chunk 

 BlockSize <= 0x20 

 PoolIndex + PoolType/BlockSize Overwrite 

 Quota Process Pointer Overwrite 

 BlockSize > 0x20 

 PoolIndex (+PoolType) Overwrite 

 Quota Process Pointer Overwrite 

 Corruption of free pool chunk 

 BlockSize <= 0x20 

 Lookaside Pointer Overwrite 

 BlockSize > 0x20 

 ListEntry Flink Overwrite / PendingFrees Pointer Overwrite 



Case Studies 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Case Study Agenda 

 Two pool overflow vulnerabilities 

 Both perceived as difficult to exploit 

 CVE-2010-3939 (MS10-098) 

 Win32k CreateDIBPalette() Pool Overflow Vulnerability 

 CVE-2010-1893 (MS10-058) 

 Integer Overflow in Windows Networking Vulnerability 



CVE-2010-3939 (MS10-098) 

 Pool overflow in win32k!CreateDIBPalette() 

 Discovered by Arkon 

 Function did not validate the number of color entries in 

the color table used by a bitmap 

 BITMAPINFOHEADER.biClrUsed 

 Every fourth byte of the overflowing buffer was set to 0x4 

 Can only reference 0x4xxxxxx addresses (user-mode) 

 PoolType is always set to NonPaged 

Pool Header 

Pool Header 

X X X 0x2 

PoolType = NonPaged | InUse 

(0x2 due to bit alignment of field on x86) 

Pool overflow 



CVE-2010-3939 (MS10-098) 

 The attacker could coerce the pool allocator to return 

a user-mode pool chunk 

 ListEntry Flink Overwrite 

 Lookaside Overwrite 

 Requires the kernel pool to be cleaned up in order 

for execution to continue safely 

 Repair/remove broken linked lists 

Pool Header 

Pool Header Next Pointer 

0x4xxxxxx Pool overflow 



CVE-2010-3939 (MS10-098) 

 Vulnerable buffer is also quota charged 

 Can overwrite the process object pointer (x86) 

 No pool chunks are corrupted (clean!) 

 Tactic: Decrement the value of a kernel-mode 

window object procedure pointer 

 Trigger the vulnerability n-times until it points to user-

mode memory and call the procedure 

Pool Header Pool Header 
Process 

Pointer 
Pool overflow 

Quota charged allocation 



Locating Window Objects 

 Via Window Manager (USER) Handle Table 

 CsrClientConnectToServer (USERSRV_INDEX) 

 Windows 7: user32!gSharedInfo 

 Windows XP: user32!UserRegisterWowHandlers 

 Via User-Mode Mapped Window Object 

 NtUserCallOneParam(…)  win32k!_MapDesktopObject 

 Patch any routine that calls user32!ValidateHwnd to return 

the window object pointer (user-mode) 

 E.g. IsServerSideWindow() 



Handle Table From User-Mode 



Kernel-Mode -> User-Mode Address 

 User-space address of desktop heap objects are 

computed using ulClientDelta  

 NtCurrentTeb()->Win32ClientInfo->ulClientDelta 

Desktop Heap 

Window 

User Kernel 

Cursor 

Desktop Heap 

Window Cursor 

ulClientDelta 



Window Objects from User-Mode 

window procedure 

Kernel window 

object pointer 



Retrieving Window Object Pointer 



Steps 

 Create a default procedure window 

 win32k!xxxDefWindowProc 

 Locate the window object in kernel memory 

 Corrupt the window procedure pointer 

 SendMessage(hwnd,…) 



CVE-2010-3939 (MS10-098) 

 Quota Process Pointer Overwrite 

 Demo 



CVE-2010-1893 (MS10-058) 

 Integer overflow in 

tcpip!IppSortDestinationAddresses() 

 Discovered by Matthieu Suiche 

 Affected Windows 7/2008 R2 and Vista/2008 

 Function did not use safe-int functions consistently 

 Could result in an undersized buffer allocation, 

subsequently leading to a pool overflow 

 



IppSortDestinationAddresses() 

 Sorts a list of IPv6 and IPv4 destination addresses 

 Each address is a SOCKADDR_IN6 record 

 Reachable from user-mode by calling WSAIoctl() 

 Ioctl: SIO_ADDRESS_LIST_SORT 

 Buffer: SOCKET_ADDRESS_LIST structure 

 Allocates buffer for the address list 

 iAddressCount * sizeof(SOCKADDR_IN6) 

 No overflow checks in multiplication 

 
typedef struct _SOCKET_ADDRESS_LIST { 

  INT            iAddressCount; 

  SOCKET_ADDRESS Address[1]; 

} SOCKET_ADDRESS_LIST, *PSOCKET_ADDRESS_LIST; 



IppFlattenAddressList() 

 Copies the user provided address list to the 

allocated kernel pool chunk 

 An undersized buffer could result in a pool overflow 

 Overflows the next pool chunk with the size of an address 

structure (0x1c bytes) 

 Stops copying records if the size != 0x1c or the 

protocol family != AF_INET6 (0x17) 

 Possible to avoid trashing the kernel pool completely 

 The protocol check is done after the memcpy() 

 We can overflow using any combination of bytes 

 

 

 



Pool Overflow 

Pool 

Header 

Address 

Record 
Chunk data 

Address 

Record 

Address 

Record 
Pool overflow 

Pool 

Header 

Blocksize padding 

Pool chunk in which 

the overflow occurs 

Corrupted memory 

(0x1c bytes minimum) 

SOCKADDR_IN6 

structure (0x1c bytes) 



Exploitation Tactics 

 Can use the PoolIndex attack to extend the pool 

overflow to an arbitrary memory write 

 Must overwrite a busy chunk 

 Overwritten chunk must be freed to ListHeads lists 

 BlockSize > 0x20 

 Or… fill the lookaside list 

 To overflow the desired pool chunk, we must 

defragment and manipulate the kernel pool 

 Allocate chunks of the same size 

 Create “holes” by freeing every other chunk 



Filling the Kernel Pool 

 What do we use to fill the pool ? 

 Depends on the pool type 

 Should be easy to allocate and free 

 NonPaged Pool 

 NT objects (low overhead) 

 Paged Pool 

 Unicode strings (e.g. object properties) 

 Session Paged Pool 

 Window Manager (USER) and GDI objects 



Kernel Objects in Pool Manipulation 

 Trivial to obtain the kernel pointers for executive, 

window manager, and GDI objects 

 Allows precise control in manipulating kernel pools 

 Window Manager (USER) Objects 

 CsrClientConnectToServer(USERSRV_INDEX) 

 Windows 7: user32!gSharedInfo 

 GDI Objects 

 Peb()->GdiSharedHandleTable 

 NT Objects 

 NtQuerySystemInformation(SystemHandleInfo…) 



Filling the Kernel Pool (NT Objects) 

NT Object 

#1 

NT Object 

#2 

NT Object 

#3 

NT Object 

#4 

NT Object 

#5 

NT Object 

#6 

NonPaged pool page 

NT Object 

#7 

NT Object 

#8 

First pool page 

allocation (offset 0) 

Second page allocation 

Offset: PAGE_SIZE – size 

NtCreateIoCompletion 

Handle 

NtQuerySystemInformation 

(SystemHandleInformation) 

Handle table entry info 

Object address 

User Kernel 



Enumerating Object Addresses 

 For NT objects, we use NtQuerySystemInformation 

to enumerate the objects’ kernel addresses 

 SystemHandleInformation 

 Before creating any holes (using NtClose), we 

ensure that we control the surrounding chunks 

 Avoid coalescing or corruption of uncontrolled chunks 

 

Other 

chunk 

NT Object 

#6 

NT Object 

#5 

NT Object 

#4 

NT Object 

#7 

Chunk to be freed 



Kernel Pool Manipulation 

 If delayed frees are used (most systems), we can create 

holes for every second allocation 

 The vulnerable buffer is later allocated in one of these holes 

 Freeing the remaining allocations after triggering the 

vulnerability mounts the PoolIndex attack 

kd> !pool @eax 

 Pool page 976e34c8 region is Nonpaged pool 

 

 976e32e0 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

 976e3340 size: 60 previous size: 60 (Free) IoCo 

 976e33a0 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

 976e3400 size: 60 previous size: 60 (Free) IoCo 

 976e3460 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

*976e34c0 size: 60 previous size: 60 (Allocated) *Ipas 

        Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys 

 976e3520 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

 976e3580 size: 60 previous size: 60 (Free) IoCo 

 976e35e0 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

 976e3640 size: 60 previous size: 60 (Free) IoCo 



Coalescing for Fun and Profit 

 If delayed frees are not used, we end up writing a 

kernel pointer to an arbitrary location 

 The address of the corrupted pool chunk 

 We use the coalescing trick to write a pointer back to 

our null-page descriptor instead 

 Trigger an unlink of the chunk that was linked into our 

crafted pool descriptor 

 Requires three sequentially allocated objects 

 One for our vulnerable buffer to fall into (after free) 

 One that will be corrupted 

 One that will be merged with the corrupted chunk 



Coalescing for Fun and Profit 

Vulnerable 

buffer 

NT Object 

#5 

NT Object 

#4 

NT Object 

#7 

Buffer allocated 

and triggers 

overflow 

Free  

(lookaside) 
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Object 

NT Object 

#4 

NT Object 

#7 

Free  

(lookaside) 

Free 

(ListHeads) 

NT Object 

#4 

NT Object 

#7 

Free  

(lookaside) 

Free (unlink 

+ merge) 

NT Object 

#7 

Before freeing, make sure the 

lookaside is full. We want this 

chunk to end up in the 

ListHeads. 

Address of corrupted 

chunk is put in null-page 

pool descriptor 

Corrupted chunk is unlinked and merged. 

Address of ListHeads entry in null-page 

pool descriptor is written to attacker-

chosen address. 

Put on lookaside as it 

was recently allocated 

Overflow into 

adjacent chunk 

Step1 Step2 Step 3 Step 4 



Addressing Multi-Core Systems 

 On multi-core systems, multiple cores/threads can 

be operating on the same pool 

 E.g. only one non-paged pool 

 We can reduce operations on free lists by populating 

the lookasides of each logical processor 

 SetProcessAffinityMask() / SetThreadAffinityMask() 

 Lookasides are periodically sized according to their 

activity by the balance set manager 

 Determined by allocate/free hits and misses 

 Increasing the size can reduce the chance of other 

threads interfering with the pool manipulation 



Populating Lookaside Lists 

KPCR #2 

 

KPCR #1 

 

KPCR #3 

 

KPCR #4 

 

Process 

(Thread) 

Call SetProcessAffinity(n) and 

force allocations/frees to populate 

lookaside lists 

NonPaged Pool 

Lookasides Lookasides Lookasides Lookasides 

Logical processors 

defining non-paged 

lookaside lists 

#ProTip: Set affinity mask to a 

processor/lookaside with less 

activity! 



Lookaside List Information 

 Can be obtained via NtQuerySystemInformation() using 
SystemLookasideInformation  

 Returns information on all the lookaside lists 

 Can be used to measure lookaside list activity 

 Each entry is represented as a 
SYSTEM_LOOKASIDE_INFORMATION structure 

 Ordered by (logical) processor 

typedef struct _SYSTEM_LOOKASIDE_INFORMATION 

{ 

    USHORT CurrentDepth; 

    USHORT MaximumDepth; 

    ULONG TotalAllocates; 

    ULONG AllocateMisses; 

    ULONG TotalFrees; 

    ULONG FreeMisses; 

    ULONG Type; 

    ULONG Tag; 

    ULONG Size; 

} SYSTEM_LOOKASIDE_INFORMATION, *PSYSTEM_LOOKASIDE_INFORMATION; 



Possible Reliability Issues (1) 

 1. Corrupted chunk is freed to a lookaside, thus 

breaking the PoolIndex attack 

 Even if we fill the lookaside, there may still be preempted 

threads that allocate from it 

 Can be addressed by maximizing the depth of the 

list while waiting for the balance set manager to 

reduce its limit 

 The lookaside list will have more entries than it can hold 

 Lookasides could also be avoided altogether by using a 

larger block size 



Possible Reliability Issues (2) 

 2. Buffer we overflow from uses a pool chunk not 

freed by us 

 Could happen if unanticipated frees were made to the 

lookaside list while filling 

 Less likely to happen on multi-core systems as we have 

multiple lookaside lists for each block size 

 Exploit reliability may improve with additional cores! 

 

 

 



Possible Reliability Issues (3) 

 3. Buffer we overflow from (after free) is reallocated 

by a different process and coalesced with the 

corrupted chunk 

 Triggers an unlink referencing the null-page (not mapped) 

 Can be addressed by overflowing from the end of a 

page into a new page 

 Requires two sequentially allocated objects on the 

beginning of the next page 



Page Boundary Pool Allocation 

 We can improve reliability by only creating holes at 

the end of a pool page 

kd> !pool @eax 

Pool page 8b518fc8 region is Nonpaged pool 

 8b518000 size:   40 previous size:    0  (Allocated)  Even (Protected) 

 8b518040 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 … 

 8b518f00 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 8b518f40 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 8b518f80 size:   40 previous size:   40  (Allocated)  Even (Protected) 

*8b518fc0 size:   40 previous size:   40  (Allocated) *Ipas 

  Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys 

  

 8b519000 size:   40 previous size:    0  (Allocated)  Even (Protected) 

 8b519040 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 8b519080 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 8b5190c0 size:   40 previous size:   40  (Allocated)  Even (Protected) 

Next page Does not merge with 

the previous chunk 



Page Boundary Pool Overflow 

Vulnerable 

buffer NT Object NT Object NT Object ... 

... 

... 

... 

NT Object 

... 

... ... 

... ... 

First allocated 

object in page. 

Last allocated 

object in page! 
... ... 

... ... 

Vulnerable buffer 

allocated on page 

boundary 



Pool Corruption Details 

Vulnerable buffer Object Data 
Pool 

Header 
Quota 

Header 

Object 

Header 

+0x000 PreviousSize     : 0y000000000 (0) 

+0x000 PoolIndex        : 0y0000101 (0x5) 

+0x002 BlockSize        : 0y000001000 (0x8) 

+0x002 PoolType         : 0y0000011 (0x3) 

+0x000 Ulong1           : 0x6080a00 

+0x004 PoolTag          : 0xef436f49 

+0x004 AllocatorBackTraceIndex : 0x6f49 

+0x006 PoolTagHash      : 0xef43 

+0x000 PagedPoolCharge  : 0 

+0x004 NonPagedPoolCharge : 0x40 

+0x008 SecurityDescriptorCharge : 0 

+0x00c SecurityDescriptorQuotaBlock : (null)  

+0x000 PointerCount     : 0n1 

… 

Event object 

41410017 41414141 41414141 41414141 

41414141 41414141 41414141 41410017 

41414141 41414141 41414141 41414141 

41414141 41414141 



CVE-2010-1893 (MS10-058) 

 Kernel pool manipulation + PoolIndex overwrite 

 Demo 



Kernel Pool Hardening 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



ListEntry Flink Overwrites 

 Can be addressed by properly validating the flink 

and blink of the chunk being unlinked 

 Yep, that’s it... 



Lookaside Pointer Overwrites 

 Lookaside lists are inherently insecure 

 Unchecked embedded pointers 

 All pool chunks must reserve space for at least the 

size of a LIST_ENTRY structure 

 Two pointers (flink and blink) 

 Chunks on lookaside lists only store a single pointer 

 Could include a cookie for protecting against pool 

overflows 

 Cookies could also be used by PendingFrees list 

entries 
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PoolIndex Overwrites 

 Can be addressed by validating the PoolIndex value 

before freeing a pool chunk 

 E.g. is PoolIndex > nt!ExpNumberOfPagedPools ? 

 Also required the NULL-page to be mapped 

 Could deny mapping of this address in non-privileged 

processes 

 Would probably break some applications (e.g. 16-bit 

WOW support) 



Quota Process Pointer Overwrites 

 Can be addressed by encoding or obfuscating the 

process pointer 

 E.g. XOR’ed with a constant unknown to the attacker 

 Ideally, no pointers should be embedded in pool 

chunks 

 Pointers to structures that are written to can easily be 

leveraged to corrupt arbitrary memory 



Conclusion 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Future Work 

 Pool content corruption 

 Object function pointers 

 Data structures 

 Remote kernel pool exploitation 

 Very situation based 

 Kernel pool manipulation is hard 

 Attacks that rely on null page mapping are infeasible 

 Kernel pool manipulation 

 Becomes more important as generic vectors are 

addressed 



Conclusion 

 The kernel pool was designed to be fast 

 E.g. no pool header obfuscation 

 In spite of safe unlinking, there is still a big window of 

opportunity in attacking pool metadata 

 Kernel pool manipulation is the key to success 

 Attacks can be addressed by adding simple checks 

or adopting exploit prevention features from the 

userland heap 

 Header integrity checks 

 Pointer encoding 

 Cookies 
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Overview 

 All the vulnerabilities addressed by this bulletin were 
related to user-mode callbacks 
 Locking issues 

 Null pointer dereferences 

 Invoking user-mode callbacks 
 Event hooks (SetWinEventHook) 

 Window hooks (SetWindowsHook) 

 Some functions call back into user-mode regardless of 
hooks 

 Pointer to callback function table stored in the PEB 
 Peb()->KernelCallbackTable 

 Hook this to do whatever during callbacks 
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Use After Free Vulnerabilities 

 All Window Manager (USER) objects are preceded 

by a HEAD structure 

 Defines handle value and lock count 

 Whenever a callback occurs, objects subsequently 

used has to be locked 

 E.g. if a window is insufficiently locked, a user could call 

DestroyWindow to free it 

 Similarly, any buffer that can be reallocated or freed 

(e.g. an array used by an object) has to be checked 

upon callback return 

 E.g. menu items array 



Ex #1: Window Object Use-After-Free 

 Microsoft previously patched two vulnerabilities in 

win32k!xxxCreateWindowEx 

 Window Creation Vulnerability (MS10-032) 

 Function Callback Vulnerability (MS10-048) 

 Both issues dealt with improper validation of 

changes occurring during callbacks 

 None of the patches ensured that the window object 

returned by the CBT hook was properly locked 

 Hence, an attacker could destroy the window object 

(in a subsequent callback) and coerce the kernel into 

operating on freed memory 



Ex #2: Cursor Object Use-After-Free 

 In using a drag cursor while dragging an object, 

win32k!xxxDragObject did not lock the original 

cursor 

 An attacker could destroy the original cursor in a 

user-mode callback such as an event hook 

 Consequently, the kernel would operate on freed 

memory upon restoring the original cursor 

 

 



Exploitability 

 In most cases, the attacker can allocate and control 
the bytes that are freed 
 E.g. using APIs that allocate strings 

 Embedded object pointers in the freed object may 
allow an attacker to increment (lock) or decrement 
(unlock) an arbitrary address 

 Common behavior of locking routines 

 Some targets 
 KTHREAD.PreviousMode 

 kernel trusts argument pointers when PreviousMode == 0 

 HANDLEENTRY.bType 

 destroy routine for free type (0) is null (mappable by user) 



Questions ? 

 Email: kernelpool@gmail.com 

 Blog: http://mista.nu/blog 

 Slides/Paper: http://mista.nu/research 

 Twitter: @kernelpool 
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