
Modern Kernel Pool Exploitation:

Attacks and Techniques

Tarjei Mandt | Infiltrate 2011

About Me

 Security Researcher at Norman

 Malware Detection Team (MDT)

 Focused on exploit detection / mitigation

 Interests

 Vulnerability research

 Operating systems internals

 Low-level stuff

 Found some kernel bugs recently

 MS10-073, MS10-098, MS11-012, ...

 Some in MS11-034

Agenda

 Introduction

 Kernel Pool Internals

 Kernel Pool Attacks

 Case Study / Demo

 Kernel Pool Hardening

 Conclusion

Introduction

Modern Kernel Pool Exploitation:

Attacks and Techniques

Introduction

 Exploit mitigations such as DEP and ASLR do not

prevent exploitation in every case

 JIT spraying, memory leaks, etc.

 Privilege isolation is becoming an important

component in confining application vulnerabilities

 Browsers and office applications employ “sandboxed”

render processes

 Relies on (security) features of the operating system

 In turn, this has motivated attackers to focus their

efforts on privilege escalation attacks

 Arbitrary ring0 code execution → OS security undermined

The Kernel Pool

 Resource for dynamically allocating memory

 Shared between all kernel modules and drivers

 Analogous to the user-mode heap

 Each pool is defined by its own structure

 Maintains lists of free pool chunks

 Highly optimized for performance

 No kernel pool cookie or pool header obfuscation

 The kernel executive exports dedicated functions for

handling pool memory

 ExAllocatePool* and ExFreePool* (discussed later)

Kernel Pool Exploitation

 An attacker’s ability to leverage pool corruption

vulnerabilities to execute arbitrary code in ring 0

 Similar to traditional heap exploitation

 Kernel pool exploitation requires careful modification

of kernel pool structures

 Access violations are likely to end up with a bug check

(BSOD)

 Up until Windows 7, kernel pool overflows could be

generically exploited using write-4 techniques

 SoBeIt[2005]

 Kortchinsky[2008]

Previous Work

 Primarily focused on XP/2003 platforms

 How To Exploit Windows Kernel Memory Pool

 Presented by SoBeIt at XCON 2005

 Proposed two write-4 exploit methods for overflows

 Real World Kernel Pool Exploitation

 Presented by Kostya Kortchinsky at SyScan 2008

 Discussed four write-4 exploitation techniques

 Demonstrated practical exploitation of MS08-001

 All the above exploitation techniques were

addressed in Windows 7 (Beck[2009])

Contributions

 Elaborate on the internal structures and changes

made to the Windows 7 (and Vista) kernel pool

 Identify weaknesses in the Windows 7 kernel pool

and show how an attacker may leverage these to

exploit pool corruption vulnerabilities

 Propose ways to thwart the discussed attacks and

further harden the kernel pool

Kernel Pool Internals

Modern Kernel Pool Exploitation:

Attacks and Techniques

Kernel Pool Fundamentals

 Kernel pools are divided into types

 Defined in the POOL_TYPE enum

 Non-Paged Pools, Paged Pools, Session Pools, etc.

 Each kernel pool is defined by a pool descriptor

 Defined by the POOL_DESCRIPTOR structure

 Tracks the number of allocs/frees, pages in use, etc.

 Maintains lists of free pool chunks

 The initial descriptors for paged and non-paged

pools are defined in the nt!PoolVector array

 Each index points to an array of one or more descriptors

Kernel Pool Descriptor (Win7 RTM x86)

 kd> dt nt!_POOL_DESCRIPTOR
 +0x000 PoolType : _POOL_TYPE

 +0x004 PagedLock : _KGUARDED_MUTEX

 +0x004 NonPagedLock : Uint4B

 +0x040 RunningAllocs : Int4B

 +0x044 RunningDeAllocs : Int4B

 +0x048 TotalBigPages : Int4B

 +0x04c ThreadsProcessingDeferrals : Int4B

 +0x050 TotalBytes : Uint4B

 +0x080 PoolIndex : Uint4B

 +0x0c0 TotalPages : Int4B

 +0x100 PendingFrees : Ptr32 Ptr32 Void

 +0x104 PendingFreeDepth: Int4B

 +0x140 ListHeads : [512] _LIST_ENTRY

Non-Paged Pool

 Non-pagable system memory
 Guaranteed to reside in physical memory at all times

 Number of pools stored in
nt!ExpNumberOfNonPagedPools

 On uniprocessor systems, the first index of the
nt!PoolVector array points to the non-paged pool
descriptor

 kd> dt nt!_POOL_DESCRIPTOR poi(nt!PoolVector)

 On multiprocessor systems, each node has its own
non-paged pool descriptor
 Pointers stored in nt!ExpNonPagedPoolDescriptor

array

Paged Pool

 Pageable system memory
 Can only be accessed at IRQL < DPC/Dispatch level

 Number of paged pools defined by
nt!ExpNumberOfPagedPools

 On uniprocessor systems, four (4) paged pool
descriptors are defined

 Index 1 through 4 in nt!ExpPagedPoolDescriptor

 On multiprocessor systems, one (1) paged pool
descriptor is defined per node

 One additional paged pool descriptor is defined for
prototype pools / full page allocations
 Index 0 in nt!ExpPagedPoolDescriptor

Session Paged Pool

 Pageable system memory for session space

 E.g. Unique to each logged in user

 Initialized in nt!MiInitializeSessionPool

 On Vista, the pool descriptor pointer is stored in

nt!ExpSessionPoolDescriptor (session space)

 On Windows 7, a pointer to the pool descriptor from

the current thread is used

 KTHREAD->Process->Session.PagedPool

 Non-paged session allocations use the global non-

paged pools

Pool Descriptor Free Lists (x86)

 Each pool descriptor has a

ListHeads array of 512 doubly-

linked lists of free chunks of the

same size

 8 byte granularity

 Used for allocations up to 4080

bytes

 Free chunks are indexed into the

ListHeads array by block size

 BlockSize: (NumBytes+0xF) >> 3

 Each pool chunk is preceded by

an 8-byte pool header

0

1

2

3

4

..

..

..

..

511

8 bytes

24 bytes

8 bytes

PoolDescriptor.ListHeads

24 bytes data +

8 byte header

4080 bytes

Kernel Pool Header (x86)

 kd> dt nt!_POOL_HEADER

 +0x000 PreviousSize : Pos 0, 9 Bits

 +0x000 PoolIndex : Pos 9, 7 Bits

 +0x002 BlockSize : Pos 0, 9 Bits

 +0x002 PoolType : Pos 9, 7 Bits

 +0x004 PoolTag : Uint4B

 PreviousSize: BlockSize of the preceding chunk

 PoolIndex: Index into the associated pool descriptor array

 BlockSize: (NumberOfBytes+0xF) >> 3

 PoolType: Free=0, Allocated=(PoolType|2)

 PoolTag: 4 printable characters identifying the code
responsible for the allocation

Kernel Pool Header (x64)

 kd> dt nt!_POOL_HEADER

 +0x000 PreviousSize : Pos 0, 8 Bits

 +0x000 PoolIndex : Pos 8, 8 Bits

 +0x000 BlockSize : Pos 16, 8 Bits

 +0x000 PoolType : Pos 24, 8 Bits

 +0x004 PoolTag : Uint4B

 +0x008 ProcessBilled : Ptr64 _EPROCESS

 BlockSize: (NumberOfBytes+0x1F) >> 4

 256 ListHeads entries due to 16 byte block size

 ProcessBilled: Pointer to process object charged for

the pool allocation (used in quota management)

Free Pool Chunks

 If a pool chunk is freed to a pool descriptor ListHeads list,

the header is followed by a LINK_ENTRY structure

 Pointed to by the ListHeads doubly-linked list

 kd> dt nt!_LIST_ENTRY

+0x000 Flink : Ptr32 _LIST_ENTRY

+0x004 Blink : Ptr32 _LIST_ENTRY

..

n

Header Header

Flink

Blink

..

Flink

Blink

Flink

Blink

PoolDescriptor.ListHeads

Blocksize n

Free chunks

Lookaside Lists

 Kernel uses lookaside lists for faster

allocation/deallocation of small pool chunks

 Singly-linked LIFO lists

 Optimized for performance – e.g. no checks

 Separate per-processor lookaside lists for pagable

and non-pagable allocations

 Defined in the Processor Control Block (KPRCB)

 Maximum BlockSize being 0x20 (256 bytes)

 8 byte granularity, hence 32 lookaside lists per type

 Each lookaside list is defined by a

GENERAL_LOOKASIDE_POOL structure

General Lookaside (Win7 RTM x86)

 kd> dt _GENERAL_LOOKASIDE_POOL
 +0x000 ListHead : _SLIST_HEADER

 +0x000 SingleListHead : _SINGLE_LIST_ENTRY

 +0x008 Depth : Uint2B

 +0x00a MaximumDepth : Uint2B

 +0x00c TotalAllocates : Uint4B

 +0x010 AllocateMisses : Uint4B

 +0x010 AllocateHits : Uint4B

 +0x014 TotalFrees : Uint4B

 +0x018 FreeMisses : Uint4B

 +0x018 FreeHits : Uint4B

 +0x01c Type : _POOL_TYPE

 +0x020 Tag : Uint4B

 +0x024 Size : Uint4B

 […]

Lookaside Lists (Per-Processor)

PPNPagedLookasideList[32]

PPPagedLookasideList[32]

PPNPagedLookasideList[0]

PPNPagedLookasideList[2]

PPNPagedLookasideList[3]

PPNPagedLookasideList[n]

PPNPagedLookasideList[1]

ListHead

Next

Depth

PPNPagedLookasideList[31]

Header Header

Processor Control Block

KPRCB

KPCR

Next Next

Free lookaside chunks

Per-Processor Non-Paged

Lookaside Lists

Each per-processor lookaside list entry

(GENERAL_LOOKASIDE_POOL) is

0x48 bytes in size

Processor Control Region

(pointed to by FS segment selector)

Lookaside Lists (Session)

 Separate per-session lookaside lists for pagable

allocations

 Defined in session space (nt!ExpSessionPoolLookaside)

 Maximum BlockSize being 0x19 (200 bytes)

 Uses the same structure (with padding) as per-processor lists

 All processors use the same session lookaside lists

 Non-paged session allocations use the per-processor

non-paged lookaside list

 Lookaside lists are disabled if hot/cold separation is used

 nt!ExpPoolFlags & 0x100

 Used during system boot to increase speed and reduce the

memory footprint

Lookaside Lists (Session)

Lookaside[25]

Lookaside[0]

Lookaside[2]

Lookaside[3]

Lookaside[n]

Lookaside[1]

ListHead

Next

Depth

Lookaside[24]

Header Header

Session Space

MM_SESSION_SPACE

(nt!MmSessionSpace)

Next Next

Free lookaside chunks

Session Paged

Lookaside Lists

Each per-processor lookaside list entry

(GENERAL_LOOKASIDE) is 0x80

bytes in size

Large Pool Allocations

 Allocations greater than 0xff0 (4080) bytes

 Handled by the function nt!ExpAllocateBigPool

 Internally calls nt!MiAllocatePoolPages

 Requested size is rounded up to the nearest page size

 Excess bytes are put back at the end of the appropriate

pool descriptor ListHeads list

 Each node (e.g. processor) has 4 singly-linked

lookaside lists for big pool allocations

 1 paged for allocations of a single page

 3 non-paged for allocations of page count 1, 2, and 3

 Defined in KNODE (KPCR.PrcbData.ParentNode)

Large Pool Allocations

 If lookaside lists cannot be used, an allocation

bitmap is used to obtain the requested pool pages

 Array of bits that indicate which memory pages are in use

 Defined by the RTL_BITMAP structure

 The bitmap is searched for the first index that holds

the requested number of unused pages

 Bitmaps are defined for every major pool type with

its own dedicated memory

 E.g. nt!MiNonPagedPoolBitMap

 The array of bits is located at the beginning of the

pool memory range

Bitmap Search (Simplified)

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1

2. RtlFindClearBits(...)

1. MiAllocatePoolPages(NonPagedPool, 0x8000)

MiNonPagedPoolBitMap

3. RtlFindAndSetClearBits(...)

4. PageAddress = MiNonPagedPoolStartAligned + (BitOffset << 0xC)

Allocation Algorithm

 The kernel exports several allocation functions for

kernel modules and drivers to use

 All exported kernel pool allocation routines are

essentially wrappers for ExAllocatePoolWithTag

 The allocation algorithm returns a free chunk by

checking with the following (in order)

 Lookaside list(s)

 ListHeads list(s)

 Pool page allocator

 Windows 7 performs safe unlinking when pulling a

chunk from a free list (Beck[2009])

Pool Header

Safe Pool Unlinking

Flink

Blink

Pool Header

0x8080BBB0

0x8080AAA0

Pool Header

Flink

Blink

Pool Header

Pool Header

Flink

0x8080AAA0

0x8080BBB0

Blink

1. Chunk to be unlinked ...

2. Does next chunk’s

Blink point at the chunk

being unlinked ?

3. Does previous chunk’s

Flink point at the chunk

being unlinked ?

ExAllocatePoolWithTag (1/2)

 PVOID ExAllocatePoolWithTag(POOL_TYPE

PoolType, SIZE_T NumberOfBytes, ULONG Tag)

 If NumberOfBytes > 0xff0

 Call nt!ExpAllocateBigPool

 If PagedPool requested

 If (PoolType & SessionPoolMask) and BlockSize <= 0x19
 Try the session paged lookaside list

 Return on success

 Else If BlockSize <= 0x20
 Try the per-processor paged lookaside list

 Return on success

 Lock (session) paged pool descriptor (round robin)

ExAllocatePoolWithTag (2/2)

 Else (NonPagedPool requested)
 If BlockSize <= 0x20

 Try the per-processor non-paged lookaside list

 Return on success

 Lock non-paged pool descriptor (local node)

 Use ListHeads of currently locked pool

 For n in range(BlockSize,512)

 If ListHeads[n] is empty, try next BlockSize

 Safe unlink first entry and split if larger than needed

 Return on success

 If failed, expand the pool by adding a page

 Call nt!MiAllocatePoolPages

 Split entry and return on success

ExAllocatePoolWithTag

Splitting Pool Chunks

 If a chunk larger than the size requested is returned

from ListHeads[n], the chunk is split

 If chunk is page aligned, the requested size is allocated

from the front of the chunk

 If chunk is not page aligned, the requested size is

allocated at the end of the chunk

 The remaining fragment of the split chunk is put at

the tail of the proper ListHeads[n] list

Free Chunk

Splitting Pool Chunks

Free Pool

Page

1st alloc

Free Chunk

1st alloc

3rd alloc

PreviousSize == 0 :

Allocate chunk in the front

PreviousSize != 0 :

Allocate chunk at the end

4th alloc

2nd alloc

Free Algorithm

 The free algorithm inspects the pool header of the

chunk to be freed and frees it to the appropriate list

 Implemented by ExFreePoolWithTag

 Bordering free chunks may be merged with the freed

chunk to reduce fragmentation

 Windows 7 uses safe unlinking in the merging process

ExFreePoolWithTag (1/2)

 VOID ExFreePoolWithTag(PVOID Address, ULONG Tag)

 If Address (chunk) is page aligned

 Call nt!MiFreePoolPages

 If Chunk->BlockSize != NextChunk->PreviousSize

 BugCheckEx(BAD_POOL_HEADER)

 If (PoolType & PagedPoolSession) and BlockSize <= 0x19

 Put in session pool lookaside list

 Else If BlockSize <= 0x20 and pool is local to processor

 If (PoolType & PagedPool)

 Put in per-processor paged lookaside list

 Else (NonPagedPool)

 Put in per-processor non-paged lookaside list

 Return on sucess

ExFreePoolWithTag (2/2)

 If the DELAY_FREE pool flag is set

 If pending frees >= 0x20

 Call nt!ExDeferredFreePool

 Add to front of pending frees list (singly-linked)

 Else

 If next chunk is free and not page aligned

 Safe unlink and merge with current chunk

 If previous chunk is free

 Safe unlink and merge with current chunk

 If resulting chunk is a full page

 Call nt!MiFreePoolPages

 Else

 Add to front of appropriate ListHeads list

ExFreePoolWithTag

Merging Pool Chunks

Pool Header

(free)

Pool Header

(busy)

Pool Header

(free)

Pool Header

(free)

Pool Header

(busy)
unlinked chunk

Chunk to be freed

Next chunk unlinked

Merge with next

Pool Header

(busy)
BlockSize updated unlinked chunk

Pool Header

(free)
BlockSize updated

Previous chunk unlinked

Merge with previous Marked as free and returned

Delayed Pool Frees

 A performance optimization that frees several pool

allocations at once to amortize pool acquisition/release

 Briefly mentioned in mxatone[2008]

 Enabled when MmNumberOfPhysicalPages >= 0x1fc00

 Equivalent to 508 MBs of RAM on IA-32 and AMD64

 nt!ExpPoolFlags & 0x200

 Each call to ExFreePoolWithTag appends a pool chunk

to a singly-linked deferred free list specific to each pool

descriptor

 Current number of entries is given by PendingFreeDepth

 The list is processed by the function ExDeferredFreePool if it

has 32 or more entries

ExDeferredFreePool

 VOID ExDeferredFreePool(PPOOL_DESCRIPTOR
PoolDescriptor, BOOLEAN bMultiThreaded)

 For each entry on pending frees list

 If next chunk is free and not page aligned

 Safe unlink and merge with current chunk

 If previous chunk is free

 Safe unlink and merge with current chunk

 If resulting chunk is a full page

 Add to full page list

 Else

 Add to front of appropriate ListHeads list

 For each page in full page list

 Call nt!MiFreePoolPages

Free Pool Chunk Ordering

 Frees to the lookaside and pool descriptor ListHeads

are always put in the front of the appropriate list

 Exceptions are remaining fragments of split blocks which

are put at the tail of the list

 Blocks are split when the pool allocator returns chunks

larger than the requested size

 Full pages split in ExpBigPoolAllocation

 ListHeads[n] entries split in ExAllocatePoolWithTag

 Allocations are always made from the most recently

used blocks, from the front of the appropriate list

 Attempts to use the CPU cache as much as possible

Kernel Pool Attacks

Modern Kernel Pool Exploitation:

Attacks and Techniques

Overview

 Traditional ListEntry Attacks (< Windows 7)

 ListEntry Flink Overwrite

 Lookaside Pointer Overwrite

 PoolIndex Overwrite

 PendingFrees Pointer Overwrite

 Quota Process Pointer Overwrite

ListEntry Overwrite (< Windows 7)

 All free list (ListHeads) pool chunks are linked

together by LIST_ENTRY structures

 Vista and former versions do not validate the

structures’ forward and backward pointers

 A ListEntry overwrite may be leveraged to trigger a

write-4 in the following situations

 Unlink in merge with next pool chunk

 Unlink in merge with previous pool chunk

 Unlink in allocation from ListHeads[n] free list

 Discussed in Kortchinsky[2008] and SoBeIt[2005]

Pool Header

ListEntry Overwrite (Merge With Next)

List Entry

F
lin

k

B
lin

k

Pool Header

(busy)

Pool Header

(busy)

Pool overflow

Chunk to be freed

Pool Header List Entry

F
lin

k

B
lin

k

P
o
o
lT

y
p
e

Pool Header

(free)
unlinked chunk write-4

When the overflowing chunk is freed, the next

bordering chunk is merged and unlinked

PoolType set to 0 (free)

Chunk size is updated to

accomodate the merged chunk

Pool Header

ListEntry Overwrite (Merge With Previous)

Pool Header

(busy)

Pool Header

(busy)

(busy) Pool overflow

Chunk to be freed

Pool Header

(busy)

F
lin

k

B
lin

k

Fake Header

(free)

P
re

v
io

u
s

S
iz

e

PreviousSize updated for

fake previous header

Pool Header

(busy)
(free) unlinked chunk write-4

Use overflow to create a fake pool

header for merging freed chunk

When the corrupted chunk is freed, the fake previous

chunk is unlinked before being merged

PoolType set to 0 (free)

ListEntry Flink Overwrite

 Windows 7 uses safe unlinking to validate the

LIST_ENTRY pointers of a chunk being unlinked

 In allocating a pool chunk from a ListHeads free list,

the kernel fails to properly validate its forward link

 The algorithm validates the ListHeads[n] LIST_ENTRY

structure instead

 Overwriting the forward link of a free chunk may

cause the address of ListHeads[n] to be written to an

attacker controlled address

 Target ListHeads[n] list must hold at least two free chunks

The Not So Safe Unlink

L
is

tE
n
tr

y

Flink

Blink

Pool Header

Flink

Pool Header

Flink

FakeEntry

Blink Blink

Pool Descriptor ListHeads

ListHeads[n].Blink

(validated in safe unlink)

ListHeads[n].Flink

(validated in safe unlink)

Index for BlockSize n,

Flink points to first

chunk to be allocated

P
o
o
l o

v
e
rflo

w

Chunk to be unlinked

After unlink

• FakeEntry.Blink = ListHeads[n]

• ListHeads[n].Flink = FakeEntry

NextEntry.Blink

(validated in safe unlink)

PreviousEntry.Flink

(validated in safe unlink)

ListEntry Flink Overwrite

 In the following output, the address of ListHeads[n]

(esi) in the pool descriptor is written to an attacker

controlled address (eax)

 Pointers are not sufficiently validated when allocating

a pool chunk from the free list

eax=80808080 ebx=829848c0 ecx=8cc15768 edx=8cc43298 esi=82984a18 edi=829848c4

eip=8296f067 esp=82974c00 ebp=82974c48 iopl=0 nv up ei pl zr na pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010246

nt!ExAllocatePoolWithTag+0x4b7:

8296f067 897004 mov dword ptr [eax+4],esi ds:0023:80808084=????????

ListEntry Flink Overwrite

 After unlink, the attacker may control the address of

the next allocated entry

 ListHeads[n].Flink = FakeEntry

 FakeEntry can be safely unlinked as its blink was

updated to point back to ListHeads[n]

 FakeEntry.Blink = ListHeads[n]

 If a user-mode pointer is used in the overwrite, the

attacker could fully control the contents of the next

allocation

ListEntry Flink Overwrite

L
is

tE
n
tr

y

Flink

Blink

Pool Header

Flink FakeEntry

Blink

Pool Descriptor ListHeads

ListHeads[n].Blink

(validated in safe unlink)

ListHeads[n].Flink

(validated in safe unlink)

Index for BlockSize n,

Flink points to first

chunk to be allocated

Chunk to be

unlinked

FakeEntry.Blink

(updated in previous unlink

and validated in safe unlink)

PreviousEntry.Flink

(validated in safe unlink)

Next

FakeEntry

Lookaside Pointer Overwrite

 Pool chunks and pool pages on lookaside lists are

singly-linked

 Each entry holds a pointer to the next entry

 Overwriting a next pointer may cause the kernel pool

allocator to return an attacker controlled address

 A pool chunk is freed to a lookaside list if the

following hold

 BlockSize <= 0x20 for paged/non-paged pool chunks

 BlockSize <= 0x19 for paged session pool chunks

 Lookaside list for target BlockSize is not full

 Hot/cold page separation is not used

Lookaside Pointer Overwrite (Chunks)

Header

Next

arbitrary

address

PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

Per-Processor Non-

Paged Lookaside Lists P
o
o
l o

v
e
rflo

w

Pool overflow into a

lookaside list chunk

PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

After an allocation has been

made for BlockSize 2, the

Next pointer points to the

attacker supplied address

arbitrary

address

Lookaside Pointer Overwrite (Pages)

 A pool page is freed to a lookaside list if the following

hold

 NumberOfPages = 1 for paged pool pages

 NumberOfPages <= 3 for non-paged pool pages

 Lookaside list for target page count is not full

 Size limit determined by physical page count in system

 A pointer overwrite of lookaside pages requires at

most a pointer-wide overflow

 No pool headers on free pool pages!

 Partial pointer overwrites may also be sufficient

Lookaside Pointer Overwrite (Pages)

PagedPoolSListHead

NonPagedPool

SListHead[0]

Next

Depth

NonPagedPoolSListHead[1]

NonPagedPoolSListHead[2]

Node (KNODE)

Pool page

(0x1000

bytes)

Next

P
o
o
l o

v
e
rflo

w

Page-aligned pointer to

next lookaside pool page

PagedPoolSListHead

NonPagedPool

SListHead[0]

Next

Depth

NonPagedPoolSListHead[1]

NonPagedPoolSListHead[2]

arbitrary

address

MiAllocatePoolPages

returns a page with an

address we control

arbitrary

address

PendingFrees Pointer Overwrite

 Pool chunks waiting to be freed are stored in the

pool descriptor deferred free list

 Singly-linked (similar to lookaside list)

 Overwriting a chunk’s next pointer will cause an

arbitrary address to be freed

 Inserted in the front of ListHeads[n]

 Next pointer must be NULL to end the linked list

 In freeing a user-mode address, the attacker may

control the contents of subsequent allocations

 Must be made from the same process context

PendingFrees Pointer Overwrite

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

0x140

+ N*8

Attacker controlled address is

returned in requesting memory

from ListHeads[n]

Paged Pool Descriptor

Data

Pool Header

Next

Flink

Blink

Pool Header

Flink

Blink

Put in front of

ListHeads[n] on free

arbitrary

address

P
o
o
l o

v
e
rflo

w

PendingFrees Pointer Overwrite Steps

 Free a chunk to the deferred free list

 Overwrite the chunk’s next pointer

 Or any of the deferred free list entries (32 in total)

 Trigger processing of the deferred free list

 Attacker controlled pointer freed to designated free list

 Force allocation of the controlled list entry

 Allocator returns user-mode address

 Corrupt allocated entry

 Trigger use of corrupted entry

PoolIndex Overwrite

 A pool chunk’s PoolIndex denotes an index into the

associated pool descriptor array

 For paged pools, PoolIndex always denotes an index

into the nt!ExpPagedPoolDescriptor array

 On checked builds, the index value is validated in a

compare against nt!ExpNumberOfPagedPools

 On free (retail) builds, the index is not validated

 For non-paged pools, PoolIndex denotes an index

into nt!ExpNonPagedPoolDescriptor when there

are multiple NUMA nodes

 PoolIndex is not validated on free builds

Pool Header

PoolIndex Overwrite

Pool Header
P

re
v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Chunk data Pool Header

BlockSize of the

previous chunk

Pool descriptor

array index

BlockSize of

the next chunk

Pool type

Pool overflow

Pool chunk in which

the overflow occurs Chunk that is corrupted

PoolIndex Overwrite

 A malformed PoolIndex may cause an allocated pool

chunk to be freed to a null-pointer pool descriptor

 Controllable with null page allocation

 Requires a 2 byte pool overflow

 When linking in to a controlled pool descriptor, the

attacker can write the address of the freed chunk to

an arbitrary location

 No checks performed when “linking in”

 All ListHeads entries are fully controlled

 ListHeads[n].Flink->Blink = FreedChunk

PoolIndex Overwrite

8b1ac000

8b1ad140

8b1ae280

8b1af3c0

8b1b0500

0

0

0

0

0

1

2

3

4

5

6

…

15

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Chunk data

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

Virtual Address Index

Flink

Pool Header

Blink

0x140

+ N*8

Flink

Attacker-controlled

pointers
Updated with pointer

to freed chunk

The virtual null page is

mapped to control the

contents of the «null»

paged pool descriptor

Freed pool chunk

nt!ExpPagedPoolDescriptor

NULL Paged Pool Descriptor

PoolIndex set to 5

Blink

PoolIndex Overwrite + Coalescing

 If delayed frees are not used, the PoolIndex attack

writes a kernel pool address to an arbitrary location

 ListHeads[n].Flink->Blink = FreedChunk

 We can extend this to an arbitrary write of a null-

page address by coalescing the freed (corrupted)

chunk

 E.g. free an adjacent pool chunk

 This will cause the initial freed chunk to be unlinked

from the free list and update the Blink with a pointer

back to the ListHeads entry (null-page)

PoolIndex Overwrite + Coalescing

HalDispatchTable

Blink

0x140

+ N*8

Target Address

(e.g. HalDispatchTable)

Pool Header

Flink

«Blink» points back to

kernel pool address

Null-page pool descriptor

ListHeads entry before 1st free

+0

xHalQuerySystemInformation

Corrupted Chunk

Blink

0x140

+ N*8

Corrupted pool chunk is freed

+0

Corrupted Chunk Blink

Pointer updated with null-

page address after unlink

HalDispatchTable

Blink

0x140

+ N*8

Corrupted pool chunk is

coalesced with adjacent free

+0

ListHeads Entry

PoolIndex Overwrite (Delayed Frees)

 If delayed pool frees is enabled, the same effect can

be achieved by creating a fake PendingFrees list

 First entry should point to a user crafted chunk

 The PendingFreeDepth field of the pool descriptor

should be >= 0x20 to trigger processing of the

PendingFrees list

 The free algorithm of ExDeferredFreePool does

basic validation on the crafted chunks

 Coalescing / safe unlinking

 The freed chunk should have busy bordering chunks

PoolIndex Overwrite (Delayed Frees)

0

1

2

3

4

5

…

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Data

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

Virtual

Address

Index

0x140

+ N*8

Freed chunks are put in front of the

linked list, hence the blink of the block

previously in front is updated

The virtual null page is

mapped to control the

contents of the «null»

paged pool descriptor

15

Freed pool chunk
NULL Paged Pool Descriptor

Data

Pool Header

Next

nt!ExpPagedPoolDescriptor

1st chunk to be linked

into ListHeads[n]

Flink

Blink

8b1ac000

8b1ad140

8b1ae280

8b1af3c0

8b1b0500

0

0

0

Pool Header

Flink

Blink

Pool Header

Flink

Blink

arbitrary

Put in front of ListHeads[n]

PoolIndex Overwrite (Example)

 In controlling the PendingFrees list, a user-controlled

virtual address (eax) can be written to an arbitrary

destination address (esi)

 In turn, this can be used to corrupt function pointers

used by the kernel to execute arbitrary code

eax=20000008 ebx=000001ff ecx=000001ff edx=00000538 esi=80808080 edi=00000000

eip=8293c943 esp=9c05fb20 ebp=9c05fb58 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202

nt!ExDeferredFreePool+0x2e3:

8293c943 894604 mov dword ptr [esi+4],eax ds:0023:80808084=????????

Quota Process Pointer Overwrite

 Quota charged pool allocations store a pointer to the

associated process object

 ExAllocatePoolWithQuotaTag(…)

 x86: last four bytes of pool body

 x64: last eight bytes of pool header

 Upon freeing a pool chunk, the quota is released and

the process object is dereferenced

 The object’s reference count is decremented

 Overwriting the process object pointer could allow an

attacker to free an in-use process object or corrupt

arbitrary memory

Quota Process Pointer Overwrite

Pool Header

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Process

Pointer

x64

Pool Header

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

x86
Process pointer stored in the pool header or at the end

of the pool body depending on platform architecture

PoolType & 0x8

(quota used)

Pool overflow
Pool

Header

Process

Pointer
Pool overflow

Pool

Header

Quota Process Pointer Overwrite

 Quota information is stored in a

EPROCESS_QUOTA_BLOCK structure

 Pointed to by the EPROCESS object

 Provides information on limits and how much quota is

being used

 On free, the charged quota is returned by subtracting

the size of the allocation from the quota used

 An attacker controlling the quota block pointer could

decrement the value of an arbitrary address

 More on this later!

Arbitrary Pointer Decrement

Pool Header
Process

Pointer
Pool overflow Pool Header

EPROCESS EPROCESS_QUOTA_BLOCK

Address of executive process object

controlled by the attacker

Usage counter decremented

on free, for which the address

is controlled by the attacker

Quota charged pool allocation (x86)

Summary of Attacks

 Corruption of busy pool chunk

 BlockSize <= 0x20

 PoolIndex + PoolType/BlockSize Overwrite

 Quota Process Pointer Overwrite

 BlockSize > 0x20

 PoolIndex (+PoolType) Overwrite

 Quota Process Pointer Overwrite

 Corruption of free pool chunk

 BlockSize <= 0x20

 Lookaside Pointer Overwrite

 BlockSize > 0x20

 ListEntry Flink Overwrite / PendingFrees Pointer Overwrite

Case Studies

Modern Kernel Pool Exploitation:

Attacks and Techniques

Case Study Agenda

 Two pool overflow vulnerabilities

 Both perceived as difficult to exploit

 CVE-2010-3939 (MS10-098)

 Win32k CreateDIBPalette() Pool Overflow Vulnerability

 CVE-2010-1893 (MS10-058)

 Integer Overflow in Windows Networking Vulnerability

CVE-2010-3939 (MS10-098)

 Pool overflow in win32k!CreateDIBPalette()

 Discovered by Arkon

 Function did not validate the number of color entries in

the color table used by a bitmap

 BITMAPINFOHEADER.biClrUsed

 Every fourth byte of the overflowing buffer was set to 0x4

 Can only reference 0x4xxxxxx addresses (user-mode)

 PoolType is always set to NonPaged

Pool Header

Pool Header

X X X 0x2

PoolType = NonPaged | InUse

(0x2 due to bit alignment of field on x86)

Pool overflow

CVE-2010-3939 (MS10-098)

 The attacker could coerce the pool allocator to return

a user-mode pool chunk

 ListEntry Flink Overwrite

 Lookaside Overwrite

 Requires the kernel pool to be cleaned up in order

for execution to continue safely

 Repair/remove broken linked lists

Pool Header

Pool Header Next Pointer

0x4xxxxxx Pool overflow

CVE-2010-3939 (MS10-098)

 Vulnerable buffer is also quota charged

 Can overwrite the process object pointer (x86)

 No pool chunks are corrupted (clean!)

 Tactic: Decrement the value of a kernel-mode

window object procedure pointer

 Trigger the vulnerability n-times until it points to user-

mode memory and call the procedure

Pool Header Pool Header
Process

Pointer
Pool overflow

Quota charged allocation

Locating Window Objects

 Via Window Manager (USER) Handle Table

 CsrClientConnectToServer (USERSRV_INDEX)

 Windows 7: user32!gSharedInfo

 Windows XP: user32!UserRegisterWowHandlers

 Via User-Mode Mapped Window Object

 NtUserCallOneParam(…) win32k!_MapDesktopObject

 Patch any routine that calls user32!ValidateHwnd to return

the window object pointer (user-mode)

 E.g. IsServerSideWindow()

Handle Table From User-Mode

Kernel-Mode -> User-Mode Address

 User-space address of desktop heap objects are

computed using ulClientDelta

 NtCurrentTeb()->Win32ClientInfo->ulClientDelta

Desktop Heap

Window

User Kernel

Cursor

Desktop Heap

Window Cursor

ulClientDelta

Window Objects from User-Mode

window procedure

Kernel window

object pointer

Retrieving Window Object Pointer

Steps

 Create a default procedure window

 win32k!xxxDefWindowProc

 Locate the window object in kernel memory

 Corrupt the window procedure pointer

 SendMessage(hwnd,…)

CVE-2010-3939 (MS10-098)

 Quota Process Pointer Overwrite

 Demo

CVE-2010-1893 (MS10-058)

 Integer overflow in

tcpip!IppSortDestinationAddresses()

 Discovered by Matthieu Suiche

 Affected Windows 7/2008 R2 and Vista/2008

 Function did not use safe-int functions consistently

 Could result in an undersized buffer allocation,

subsequently leading to a pool overflow

IppSortDestinationAddresses()

 Sorts a list of IPv6 and IPv4 destination addresses

 Each address is a SOCKADDR_IN6 record

 Reachable from user-mode by calling WSAIoctl()

 Ioctl: SIO_ADDRESS_LIST_SORT

 Buffer: SOCKET_ADDRESS_LIST structure

 Allocates buffer for the address list

 iAddressCount * sizeof(SOCKADDR_IN6)

 No overflow checks in multiplication

typedef struct _SOCKET_ADDRESS_LIST {

 INT iAddressCount;

 SOCKET_ADDRESS Address[1];

} SOCKET_ADDRESS_LIST, *PSOCKET_ADDRESS_LIST;

IppFlattenAddressList()

 Copies the user provided address list to the

allocated kernel pool chunk

 An undersized buffer could result in a pool overflow

 Overflows the next pool chunk with the size of an address

structure (0x1c bytes)

 Stops copying records if the size != 0x1c or the

protocol family != AF_INET6 (0x17)

 Possible to avoid trashing the kernel pool completely

 The protocol check is done after the memcpy()

 We can overflow using any combination of bytes

Pool Overflow

Pool

Header

Address

Record
Chunk data

Address

Record

Address

Record
Pool overflow

Pool

Header

Blocksize padding

Pool chunk in which

the overflow occurs

Corrupted memory

(0x1c bytes minimum)

SOCKADDR_IN6

structure (0x1c bytes)

Exploitation Tactics

 Can use the PoolIndex attack to extend the pool

overflow to an arbitrary memory write

 Must overwrite a busy chunk

 Overwritten chunk must be freed to ListHeads lists

 BlockSize > 0x20

 Or… fill the lookaside list

 To overflow the desired pool chunk, we must

defragment and manipulate the kernel pool

 Allocate chunks of the same size

 Create “holes” by freeing every other chunk

Filling the Kernel Pool

 What do we use to fill the pool ?

 Depends on the pool type

 Should be easy to allocate and free

 NonPaged Pool

 NT objects (low overhead)

 Paged Pool

 Unicode strings (e.g. object properties)

 Session Paged Pool

 Window Manager (USER) and GDI objects

Kernel Objects in Pool Manipulation

 Trivial to obtain the kernel pointers for executive,

window manager, and GDI objects

 Allows precise control in manipulating kernel pools

 Window Manager (USER) Objects

 CsrClientConnectToServer(USERSRV_INDEX)

 Windows 7: user32!gSharedInfo

 GDI Objects

 Peb()->GdiSharedHandleTable

 NT Objects

 NtQuerySystemInformation(SystemHandleInfo…)

Filling the Kernel Pool (NT Objects)

NT Object

#1

NT Object

#2

NT Object

#3

NT Object

#4

NT Object

#5

NT Object

#6

NonPaged pool page

NT Object

#7

NT Object

#8

First pool page

allocation (offset 0)

Second page allocation

Offset: PAGE_SIZE – size

NtCreateIoCompletion

Handle

NtQuerySystemInformation

(SystemHandleInformation)

Handle table entry info

Object address

User Kernel

Enumerating Object Addresses

 For NT objects, we use NtQuerySystemInformation

to enumerate the objects’ kernel addresses

 SystemHandleInformation

 Before creating any holes (using NtClose), we

ensure that we control the surrounding chunks

 Avoid coalescing or corruption of uncontrolled chunks

Other

chunk

NT Object

#6

NT Object

#5

NT Object

#4

NT Object

#7

Chunk to be freed

Kernel Pool Manipulation

 If delayed frees are used (most systems), we can create

holes for every second allocation

 The vulnerable buffer is later allocated in one of these holes

 Freeing the remaining allocations after triggering the

vulnerability mounts the PoolIndex attack

kd> !pool @eax

 Pool page 976e34c8 region is Nonpaged pool

 976e32e0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

 976e3340 size: 60 previous size: 60 (Free) IoCo

 976e33a0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

 976e3400 size: 60 previous size: 60 (Free) IoCo

 976e3460 size: 60 previous size: 60 (Allocated) IoCo (Protected)

*976e34c0 size: 60 previous size: 60 (Allocated) *Ipas

 Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys

 976e3520 size: 60 previous size: 60 (Allocated) IoCo (Protected)

 976e3580 size: 60 previous size: 60 (Free) IoCo

 976e35e0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

 976e3640 size: 60 previous size: 60 (Free) IoCo

Coalescing for Fun and Profit

 If delayed frees are not used, we end up writing a

kernel pointer to an arbitrary location

 The address of the corrupted pool chunk

 We use the coalescing trick to write a pointer back to

our null-page descriptor instead

 Trigger an unlink of the chunk that was linked into our

crafted pool descriptor

 Requires three sequentially allocated objects

 One for our vulnerable buffer to fall into (after free)

 One that will be corrupted

 One that will be merged with the corrupted chunk

Coalescing for Fun and Profit

Vulnerable

buffer

NT Object

#5

NT Object

#4

NT Object

#7

Buffer allocated

and triggers

overflow

Free

(lookaside)

Corrupted

Object

NT Object

#4

NT Object

#7

Free

(lookaside)

Free

(ListHeads)

NT Object

#4

NT Object

#7

Free

(lookaside)

Free (unlink

+ merge)

NT Object

#7

Before freeing, make sure the

lookaside is full. We want this

chunk to end up in the

ListHeads.

Address of corrupted

chunk is put in null-page

pool descriptor

Corrupted chunk is unlinked and merged.

Address of ListHeads entry in null-page

pool descriptor is written to attacker-

chosen address.

Put on lookaside as it

was recently allocated

Overflow into

adjacent chunk

Step1 Step2 Step 3 Step 4

Addressing Multi-Core Systems

 On multi-core systems, multiple cores/threads can

be operating on the same pool

 E.g. only one non-paged pool

 We can reduce operations on free lists by populating

the lookasides of each logical processor

 SetProcessAffinityMask() / SetThreadAffinityMask()

 Lookasides are periodically sized according to their

activity by the balance set manager

 Determined by allocate/free hits and misses

 Increasing the size can reduce the chance of other

threads interfering with the pool manipulation

Populating Lookaside Lists

KPCR #2

KPCR #1

KPCR #3

KPCR #4

Process

(Thread)

Call SetProcessAffinity(n) and

force allocations/frees to populate

lookaside lists

NonPaged Pool

Lookasides Lookasides Lookasides Lookasides

Logical processors

defining non-paged

lookaside lists

#ProTip: Set affinity mask to a

processor/lookaside with less

activity!

Lookaside List Information

 Can be obtained via NtQuerySystemInformation() using
SystemLookasideInformation

 Returns information on all the lookaside lists

 Can be used to measure lookaside list activity

 Each entry is represented as a
SYSTEM_LOOKASIDE_INFORMATION structure

 Ordered by (logical) processor

typedef struct _SYSTEM_LOOKASIDE_INFORMATION

{

 USHORT CurrentDepth;

 USHORT MaximumDepth;

 ULONG TotalAllocates;

 ULONG AllocateMisses;

 ULONG TotalFrees;

 ULONG FreeMisses;

 ULONG Type;

 ULONG Tag;

 ULONG Size;

} SYSTEM_LOOKASIDE_INFORMATION, *PSYSTEM_LOOKASIDE_INFORMATION;

Possible Reliability Issues (1)

 1. Corrupted chunk is freed to a lookaside, thus

breaking the PoolIndex attack

 Even if we fill the lookaside, there may still be preempted

threads that allocate from it

 Can be addressed by maximizing the depth of the

list while waiting for the balance set manager to

reduce its limit

 The lookaside list will have more entries than it can hold

 Lookasides could also be avoided altogether by using a

larger block size

Possible Reliability Issues (2)

 2. Buffer we overflow from uses a pool chunk not

freed by us

 Could happen if unanticipated frees were made to the

lookaside list while filling

 Less likely to happen on multi-core systems as we have

multiple lookaside lists for each block size

 Exploit reliability may improve with additional cores!

Possible Reliability Issues (3)

 3. Buffer we overflow from (after free) is reallocated

by a different process and coalesced with the

corrupted chunk

 Triggers an unlink referencing the null-page (not mapped)

 Can be addressed by overflowing from the end of a

page into a new page

 Requires two sequentially allocated objects on the

beginning of the next page

Page Boundary Pool Allocation

 We can improve reliability by only creating holes at

the end of a pool page

kd> !pool @eax

Pool page 8b518fc8 region is Nonpaged pool

 8b518000 size: 40 previous size: 0 (Allocated) Even (Protected)

 8b518040 size: 40 previous size: 40 (Allocated) Even (Protected)

 …

 8b518f00 size: 40 previous size: 40 (Allocated) Even (Protected)

 8b518f40 size: 40 previous size: 40 (Allocated) Even (Protected)

 8b518f80 size: 40 previous size: 40 (Allocated) Even (Protected)

*8b518fc0 size: 40 previous size: 40 (Allocated) *Ipas

 Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys

 8b519000 size: 40 previous size: 0 (Allocated) Even (Protected)

 8b519040 size: 40 previous size: 40 (Allocated) Even (Protected)

 8b519080 size: 40 previous size: 40 (Allocated) Even (Protected)

 8b5190c0 size: 40 previous size: 40 (Allocated) Even (Protected)

Next page Does not merge with

the previous chunk

Page Boundary Pool Overflow

Vulnerable

buffer NT Object NT Object NT Object ...

...

...

...

NT Object

...

... ...

... ...

First allocated

object in page.

Last allocated

object in page!
... ...

... ...

Vulnerable buffer

allocated on page

boundary

Pool Corruption Details

Vulnerable buffer Object Data
Pool

Header
Quota

Header

Object

Header

+0x000 PreviousSize : 0y000000000 (0)

+0x000 PoolIndex : 0y0000101 (0x5)

+0x002 BlockSize : 0y000001000 (0x8)

+0x002 PoolType : 0y0000011 (0x3)

+0x000 Ulong1 : 0x6080a00

+0x004 PoolTag : 0xef436f49

+0x004 AllocatorBackTraceIndex : 0x6f49

+0x006 PoolTagHash : 0xef43

+0x000 PagedPoolCharge : 0

+0x004 NonPagedPoolCharge : 0x40

+0x008 SecurityDescriptorCharge : 0

+0x00c SecurityDescriptorQuotaBlock : (null)

+0x000 PointerCount : 0n1

…

Event object

41410017 41414141 41414141 41414141

41414141 41414141 41414141 41410017

41414141 41414141 41414141 41414141

41414141 41414141

CVE-2010-1893 (MS10-058)

 Kernel pool manipulation + PoolIndex overwrite

 Demo

Kernel Pool Hardening

Modern Kernel Pool Exploitation:

Attacks and Techniques

ListEntry Flink Overwrites

 Can be addressed by properly validating the flink

and blink of the chunk being unlinked

 Yep, that’s it...

Lookaside Pointer Overwrites

 Lookaside lists are inherently insecure

 Unchecked embedded pointers

 All pool chunks must reserve space for at least the

size of a LIST_ENTRY structure

 Two pointers (flink and blink)

 Chunks on lookaside lists only store a single pointer

 Could include a cookie for protecting against pool

overflows

 Cookies could also be used by PendingFrees list

entries

Lookaside Pool Chunk Cookie

Header
PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

Per-Processor Non-

Paged Lookaside Lists

Cookie

Next

P
o
o
l o

v
e
rflo

w

Header

Cookie

Next

ExAllocatePoolWithTag verifies

Cookie before returning the chunk

PoolIndex Overwrites

 Can be addressed by validating the PoolIndex value

before freeing a pool chunk

 E.g. is PoolIndex > nt!ExpNumberOfPagedPools ?

 Also required the NULL-page to be mapped

 Could deny mapping of this address in non-privileged

processes

 Would probably break some applications (e.g. 16-bit

WOW support)

Quota Process Pointer Overwrites

 Can be addressed by encoding or obfuscating the

process pointer

 E.g. XOR’ed with a constant unknown to the attacker

 Ideally, no pointers should be embedded in pool

chunks

 Pointers to structures that are written to can easily be

leveraged to corrupt arbitrary memory

Conclusion

Modern Kernel Pool Exploitation:

Attacks and Techniques

Future Work

 Pool content corruption

 Object function pointers

 Data structures

 Remote kernel pool exploitation

 Very situation based

 Kernel pool manipulation is hard

 Attacks that rely on null page mapping are infeasible

 Kernel pool manipulation

 Becomes more important as generic vectors are

addressed

Conclusion

 The kernel pool was designed to be fast

 E.g. no pool header obfuscation

 In spite of safe unlinking, there is still a big window of

opportunity in attacking pool metadata

 Kernel pool manipulation is the key to success

 Attacks can be addressed by adding simple checks

or adopting exploit prevention features from the

userland heap

 Header integrity checks

 Pointer encoding

 Cookies

References

 SoBeIt[2005] – SoBeIt
How to exploit Windows kernel memory pool,
X’con 2005

 Kortchinsky[2008] – Kostya Kortchinsky
Real-World Kernel Pool Exploitation,
SyScan 2008 Hong Kong

 Mxatone[2008] – mxatone
Analyzing Local Privilege Escalations in win32k,
Uninformed Journal, vol. 10 article 2

 Beck[2009] – Peter Beck
Safe Unlinking in the Kernel Pool,
Microsoft Security Research & Defense (blog)

MS11-034

Modern Kernel Pool Exploitation:

Attacks and Techniques

Overview

 All the vulnerabilities addressed by this bulletin were
related to user-mode callbacks
 Locking issues

 Null pointer dereferences

 Invoking user-mode callbacks
 Event hooks (SetWinEventHook)

 Window hooks (SetWindowsHook)

 Some functions call back into user-mode regardless of
hooks

 Pointer to callback function table stored in the PEB
 Peb()->KernelCallbackTable

 Hook this to do whatever during callbacks

NTOSKRNL

USER32

NTDLL

nt!KeUserModeCallback

user

kernel

KeUserModeCallback

KiUserCallbackDispatcher

KernelCallbackTable

NtCallbackReturn

Switch to kernel

callback stack

__ClientLoadLibrary

__ClientLoadMenu

__ClientEventCallback

NtCallbackReturn

Set TRAP_FRAME EIP to

KiUserCallbackDispatcher
Restore original

TRAP_FRAME EIP

Restore original

kernel stack

CallbackFunction
User application

Hook for fun and profit

Use After Free Vulnerabilities

 All Window Manager (USER) objects are preceded

by a HEAD structure

 Defines handle value and lock count

 Whenever a callback occurs, objects subsequently

used has to be locked

 E.g. if a window is insufficiently locked, a user could call

DestroyWindow to free it

 Similarly, any buffer that can be reallocated or freed

(e.g. an array used by an object) has to be checked

upon callback return

 E.g. menu items array

Ex #1: Window Object Use-After-Free

 Microsoft previously patched two vulnerabilities in

win32k!xxxCreateWindowEx

 Window Creation Vulnerability (MS10-032)

 Function Callback Vulnerability (MS10-048)

 Both issues dealt with improper validation of

changes occurring during callbacks

 None of the patches ensured that the window object

returned by the CBT hook was properly locked

 Hence, an attacker could destroy the window object

(in a subsequent callback) and coerce the kernel into

operating on freed memory

Ex #2: Cursor Object Use-After-Free

 In using a drag cursor while dragging an object,

win32k!xxxDragObject did not lock the original

cursor

 An attacker could destroy the original cursor in a

user-mode callback such as an event hook

 Consequently, the kernel would operate on freed

memory upon restoring the original cursor

Exploitability

 In most cases, the attacker can allocate and control
the bytes that are freed
 E.g. using APIs that allocate strings

 Embedded object pointers in the freed object may
allow an attacker to increment (lock) or decrement
(unlock) an arbitrary address

 Common behavior of locking routines

 Some targets
 KTHREAD.PreviousMode

 kernel trusts argument pointers when PreviousMode == 0

 HANDLEENTRY.bType

 destroy routine for free type (0) is null (mappable by user)

Questions ?

 Email: kernelpool@gmail.com

 Blog: http://mista.nu/blog

 Slides/Paper: http://mista.nu/research

 Twitter: @kernelpool

mailto:kernelpool@gmail.com
http://mista.nu/blog
http://mista.nu/research

