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Introduction 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Introduction 

 Exploit mitigations such as DEP and ASLR do not 

prevent exploitation in every case 

 JIT spraying, memory leaks, etc. 

 Privilege isolation is becoming an important 

component in confining application vulnerabilities 

 Browsers and office applications employ “sandboxed” 

render processes 

 Relies on (security) features of the operating system 

 In turn, this has motivated attackers to focus their 

efforts on privilege escalation attacks 

 Arbitrary ring0 code execution → OS security undermined 



The Kernel Pool 

 Resource for dynamically allocating memory 

 Shared between all kernel modules and drivers 

 Analogous to the user-mode heap 

 Each pool is defined by its own structure 

 Maintains lists of free pool chunks 

 Highly optimized for performance 

 No kernel pool cookie or pool header obfuscation 

 The kernel executive exports dedicated functions for 

handling pool memory 

 ExAllocatePool* and ExFreePool* (discussed later) 



Kernel Pool Exploitation 

 An attacker’s ability to leverage pool corruption 

vulnerabilities to execute arbitrary code in ring 0 

 Similar to traditional heap exploitation 

 Kernel pool exploitation requires careful modification 

of kernel pool structures 

 Access violations are likely to end up with a bug check 

(BSOD) 

 Up until Windows 7, kernel pool overflows could be 

generically exploited using write-4 techniques 

 SoBeIt[2005] 

 Kortchinsky[2008] 

 



Previous Work 

 Primarily focused on XP/2003 platforms 

 How To Exploit Windows Kernel Memory Pool 

 Presented by SoBeIt at XCON 2005 

 Proposed two write-4 exploit methods for overflows 

 Real World Kernel Pool Exploitation 

 Presented by Kostya Kortchinsky at SyScan 2008 

 Discussed four write-4 exploitation techniques 

 Demonstrated practical exploitation of MS08-001 

 All the above exploitation techniques were 

addressed in Windows 7 (Beck[2009]) 



Contributions 

 Elaborate on the internal structures and changes 

made to the Windows 7 (and Vista) kernel pool 

 Identify weaknesses in the Windows 7 kernel pool 

and show how an attacker may leverage these to 

exploit pool corruption vulnerabilities 

 Propose ways to thwart the discussed attacks and 

further harden the kernel pool 



Kernel Pool Internals 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Kernel Pool Fundamentals 

 Kernel pools are divided into types 

 Defined in the POOL_TYPE enum 

 Non-Paged Pools, Paged Pools, Session Pools, etc. 

 Each kernel pool is defined by a pool descriptor 

 Defined by the POOL_DESCRIPTOR structure 

 Tracks the number of allocs/frees, pages in use, etc. 

 Maintains lists of free pool chunks 

 The initial descriptors for paged and non-paged 

pools are defined in the nt!PoolVector array 

 Each index points to an array of one or more descriptors 



Kernel Pool Descriptor (Win7 RTM x86) 

 kd> dt nt!_POOL_DESCRIPTOR 
 +0x000 PoolType  : _POOL_TYPE 

 +0x004 PagedLock : _KGUARDED_MUTEX 

 +0x004 NonPagedLock : Uint4B 

 +0x040 RunningAllocs : Int4B 

 +0x044 RunningDeAllocs : Int4B 

 +0x048 TotalBigPages : Int4B 

 +0x04c ThreadsProcessingDeferrals : Int4B 

 +0x050 TotalBytes  : Uint4B 

 +0x080 PoolIndex  : Uint4B 

 +0x0c0 TotalPages : Int4B 

 +0x100 PendingFrees : Ptr32 Ptr32 Void 

 +0x104 PendingFreeDepth: Int4B 

 +0x140 ListHeads  : [512] _LIST_ENTRY 



Non-Paged Pool 

 Non-pagable system memory 
 Guaranteed to reside in physical memory at all times 

 Number of pools stored in 
nt!ExpNumberOfNonPagedPools 

 On uniprocessor systems, the first index of the 
nt!PoolVector array points to the non-paged pool 
descriptor 

 kd> dt nt!_POOL_DESCRIPTOR poi(nt!PoolVector) 

 On multiprocessor systems, each node has its own 
non-paged pool descriptor  
 Pointers stored in nt!ExpNonPagedPoolDescriptor 

array 



Paged Pool 

 Pageable system memory 
 Can only be accessed at IRQL < DPC/Dispatch level 

 Number of paged pools defined by 
nt!ExpNumberOfPagedPools 

 On uniprocessor systems, four (4) paged pool 
descriptors are defined 

 Index 1 through 4 in nt!ExpPagedPoolDescriptor 

 On multiprocessor systems, one (1) paged pool 
descriptor is defined per node 

 One additional paged pool descriptor is defined for 
prototype pools / full page allocations 
 Index 0 in nt!ExpPagedPoolDescriptor 



Session Paged Pool 

 Pageable system memory for session space 

 E.g. Unique to each logged in user 

 Initialized in nt!MiInitializeSessionPool 

 On Vista, the pool descriptor pointer is stored in 

nt!ExpSessionPoolDescriptor (session space) 

 On Windows 7, a pointer to the pool descriptor from 

the current thread is used 

 KTHREAD->Process->Session.PagedPool 

 Non-paged session allocations use the global non-

paged pools 

 



Pool Descriptor Free Lists (x86) 

 Each pool descriptor has a 

ListHeads array of 512 doubly-

linked lists of free chunks of the 

same size 

 8 byte granularity 

 Used for allocations up to 4080 

bytes 

 Free chunks are indexed into the 

ListHeads array by block size  

 BlockSize: (NumBytes+0xF) >> 3 

 Each pool chunk is preceded by 

an 8-byte pool header 
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Kernel Pool Header (x86) 

 kd> dt nt!_POOL_HEADER 

 +0x000 PreviousSize : Pos 0, 9 Bits 

 +0x000 PoolIndex  : Pos 9, 7 Bits 

 +0x002 BlockSize  : Pos 0, 9 Bits 

 +0x002 PoolType  : Pos 9, 7 Bits 

 +0x004 PoolTag  : Uint4B 

 PreviousSize: BlockSize of the preceding chunk 

 PoolIndex: Index into the associated pool descriptor array 

 BlockSize: (NumberOfBytes+0xF) >> 3 

 PoolType: Free=0, Allocated=(PoolType|2) 

 PoolTag: 4 printable characters identifying the code 
responsible for the allocation 

 



Kernel Pool Header (x64) 

 kd> dt nt!_POOL_HEADER 

 +0x000 PreviousSize : Pos 0, 8 Bits 

 +0x000 PoolIndex : Pos 8, 8 Bits 

 +0x000 BlockSize : Pos 16, 8 Bits 

 +0x000 PoolType : Pos 24, 8 Bits 

 +0x004 PoolTag  : Uint4B 

 +0x008 ProcessBilled : Ptr64 _EPROCESS 

 BlockSize: (NumberOfBytes+0x1F) >> 4 

 256 ListHeads entries due to 16 byte block size 

 ProcessBilled: Pointer to process object charged for 

the pool allocation (used in quota management) 

 



Free Pool Chunks 

 If a pool chunk is freed to a pool descriptor ListHeads list, 

the header is followed by a LINK_ENTRY structure 

 Pointed to by the ListHeads doubly-linked list 

 kd> dt nt!_LIST_ENTRY 

+0x000 Flink : Ptr32 _LIST_ENTRY 

+0x004 Blink : Ptr32 _LIST_ENTRY 

.. 

n 

Header Header 

Flink 

Blink 

.. 

Flink 

Blink 

Flink 

Blink 

PoolDescriptor.ListHeads 

Blocksize n 

Free chunks 



Lookaside Lists 

 Kernel uses lookaside lists for faster 

allocation/deallocation of small pool chunks 

 Singly-linked LIFO lists 

 Optimized for performance – e.g. no checks 

 Separate per-processor lookaside lists for pagable 

and non-pagable allocations 

 Defined in the Processor Control Block (KPRCB) 

 Maximum BlockSize being 0x20 (256 bytes) 

 8 byte granularity, hence 32 lookaside lists per type 

 Each lookaside list is defined by a 

GENERAL_LOOKASIDE_POOL structure 



General Lookaside (Win7 RTM x86) 

 kd> dt _GENERAL_LOOKASIDE_POOL 
 +0x000 ListHead  : _SLIST_HEADER 

 +0x000 SingleListHead : _SINGLE_LIST_ENTRY 

 +0x008 Depth  : Uint2B 

 +0x00a MaximumDepth : Uint2B 

 +0x00c TotalAllocates : Uint4B 

 +0x010 AllocateMisses : Uint4B 

 +0x010 AllocateHits : Uint4B 

 +0x014 TotalFrees : Uint4B 

 +0x018 FreeMisses : Uint4B 

 +0x018 FreeHits  : Uint4B 

 +0x01c Type  : _POOL_TYPE 

 +0x020 Tag  : Uint4B 

 +0x024 Size  : Uint4B 

 […] 
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Per-Processor Non-Paged 

Lookaside Lists 

Each per-processor lookaside list entry 

(GENERAL_LOOKASIDE_POOL) is 

0x48 bytes in size 

Processor Control Region 

(pointed to by FS segment selector) 



Lookaside Lists (Session) 

 Separate per-session lookaside lists for pagable 

allocations 

 Defined in session space (nt!ExpSessionPoolLookaside) 

 Maximum BlockSize being 0x19 (200 bytes) 

 Uses the same structure (with padding) as per-processor lists 

 All processors use the same session lookaside lists 

 Non-paged session allocations use the per-processor 

non-paged lookaside list 

 Lookaside lists are disabled if hot/cold separation is used 

 nt!ExpPoolFlags & 0x100 

 Used during system boot to increase speed and reduce the 

memory footprint 



 

 

 

 

Lookaside Lists (Session) 
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Session Paged 

Lookaside Lists 

Each per-processor lookaside list entry 

(GENERAL_LOOKASIDE) is 0x80 

bytes in size 



Large Pool Allocations 

 Allocations greater than 0xff0 (4080) bytes 

 Handled by the function nt!ExpAllocateBigPool 

 Internally calls nt!MiAllocatePoolPages 

 Requested size is rounded up to the nearest page size 

 Excess bytes are put back at the end of the appropriate 

pool descriptor ListHeads list 

 Each node (e.g. processor) has 4 singly-linked 

lookaside lists for big pool allocations 

 1 paged for allocations of a single page 

 3 non-paged for allocations of page count 1, 2, and 3 

 Defined in KNODE (KPCR.PrcbData.ParentNode) 



Large Pool Allocations 

 If lookaside lists cannot be used, an allocation 

bitmap is used to obtain the requested pool pages 

 Array of bits that indicate which memory pages are in use 

 Defined by the RTL_BITMAP structure 

 The bitmap is searched for the first index that holds 

the requested number of unused pages 

 Bitmaps are defined for every major pool type with 

its own dedicated memory 

 E.g. nt!MiNonPagedPoolBitMap 

 The array of bits is located at the beginning of the 

pool memory range 



Bitmap Search (Simplified) 

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 

2. RtlFindClearBits(...) 

1. MiAllocatePoolPages(NonPagedPool, 0x8000) 

MiNonPagedPoolBitMap 

3. RtlFindAndSetClearBits(...) 

4. PageAddress = MiNonPagedPoolStartAligned + ( BitOffset << 0xC ) 



Allocation Algorithm 

 The kernel exports several allocation functions for 

kernel modules and drivers to use 

 All exported kernel pool allocation routines are 

essentially wrappers for ExAllocatePoolWithTag 

 The allocation algorithm returns a free chunk by 

checking with the following (in order) 

 Lookaside list(s) 

 ListHeads list(s) 

 Pool page allocator 

 Windows 7 performs safe unlinking when pulling a 

chunk from a free list (Beck[2009]) 
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ExAllocatePoolWithTag (1/2) 

 PVOID ExAllocatePoolWithTag(POOL_TYPE 

PoolType, SIZE_T NumberOfBytes, ULONG Tag) 

 If NumberOfBytes > 0xff0 

 Call nt!ExpAllocateBigPool 

 If PagedPool requested 

 If (PoolType & SessionPoolMask) and BlockSize <= 0x19 
 Try the session paged lookaside list 

 Return on success 

 Else If BlockSize <= 0x20 
 Try the per-processor paged lookaside list 

 Return on success 

 Lock (session) paged pool descriptor (round robin) 

 



ExAllocatePoolWithTag (2/2) 

 Else (NonPagedPool requested) 
 If BlockSize <= 0x20 

 Try the per-processor non-paged lookaside list 

 Return on success 

 Lock non-paged pool descriptor (local node) 

 Use ListHeads of currently locked pool 

 For n in range(BlockSize,512) 

 If ListHeads[n] is empty, try next BlockSize 

 Safe unlink first entry and split if larger than needed 

 Return on success 

 If failed, expand the pool by adding a page 

 Call nt!MiAllocatePoolPages 

 Split entry and return on success 



ExAllocatePoolWithTag 



Splitting Pool Chunks 

 If a chunk larger than the size requested is returned 

from ListHeads[n], the chunk is split 

 If chunk is page aligned, the requested size is allocated 

from the front of the chunk 

 If chunk is not page aligned, the requested size is 

allocated at the end of the chunk 

 The remaining fragment of the split chunk is put at 

the tail of the proper ListHeads[n] list 



Free Chunk 

Splitting Pool Chunks 

Free Pool 

Page 

1st alloc 

Free Chunk 

1st alloc 

3rd alloc 

PreviousSize == 0 : 

Allocate chunk in the front 

PreviousSize != 0 : 

Allocate chunk at the end 

4th alloc 

2nd alloc 



Free Algorithm 

 The free algorithm inspects the pool header of the 

chunk to be freed and frees it to the appropriate list 

 Implemented by ExFreePoolWithTag 

 Bordering free chunks may be merged with the freed 

chunk to reduce fragmentation 

 Windows 7 uses safe unlinking in the merging process 



ExFreePoolWithTag (1/2) 

 VOID ExFreePoolWithTag(PVOID Address, ULONG Tag) 

 If Address (chunk) is page aligned 

 Call nt!MiFreePoolPages 

 If Chunk->BlockSize != NextChunk->PreviousSize 

 BugCheckEx(BAD_POOL_HEADER) 

 If (PoolType & PagedPoolSession) and BlockSize <= 0x19 

 Put in session pool lookaside list 

 Else If BlockSize <= 0x20 and pool is local to processor 

 If (PoolType & PagedPool) 

 Put in per-processor paged lookaside list 

 Else (NonPagedPool) 

 Put in per-processor non-paged lookaside list 

 Return on sucess 



ExFreePoolWithTag (2/2) 

 If the DELAY_FREE pool flag is set 

 If pending frees >= 0x20 

 Call nt!ExDeferredFreePool 

 Add to front of pending frees list (singly-linked) 

 Else 

 If next chunk is free and not page aligned 

 Safe unlink and merge with current chunk 

 If previous chunk is free 

 Safe unlink and merge with current chunk 

 If resulting chunk is a full page 

 Call nt!MiFreePoolPages 

 Else 

 Add to front of appropriate ListHeads list 



ExFreePoolWithTag 
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Delayed Pool Frees 

 A performance optimization that frees several pool 

allocations at once to amortize pool acquisition/release 

 Briefly mentioned in mxatone[2008] 

 Enabled when MmNumberOfPhysicalPages >= 0x1fc00 

 Equivalent to 508 MBs of RAM on IA-32 and AMD64 

 nt!ExpPoolFlags & 0x200 

 Each call to ExFreePoolWithTag appends a pool chunk 

to a singly-linked deferred free list specific to each pool 

descriptor 

 Current number of entries is given by PendingFreeDepth 

 The list is processed by the function ExDeferredFreePool if it 

has 32 or more entries 



ExDeferredFreePool 

 VOID ExDeferredFreePool(PPOOL_DESCRIPTOR 
PoolDescriptor, BOOLEAN bMultiThreaded) 

 For each entry on pending frees list 

 If next chunk is free and not page aligned 

 Safe unlink and merge with current chunk 

 If previous chunk is free 

 Safe unlink and merge with current chunk 

 If resulting chunk is a full page 

 Add to full page list 

 Else 

 Add to front of appropriate ListHeads list 

 For each page in full page list 

 Call nt!MiFreePoolPages 

 



Free Pool Chunk Ordering 

 Frees to the lookaside and pool descriptor ListHeads 

are always put in the front of the appropriate list 

 Exceptions are remaining fragments of split blocks which 

are put at the tail of the list 

 Blocks are split when the pool allocator returns chunks 

larger than the requested size 

 Full pages split in ExpBigPoolAllocation 

 ListHeads[n] entries split in ExAllocatePoolWithTag 

 Allocations are always made from the most recently 

used blocks, from the front of the appropriate list 

 Attempts to use the CPU cache as much as possible 



Kernel Pool Attacks 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Overview 

 Traditional ListEntry Attacks (< Windows 7) 

 ListEntry Flink Overwrite 

 Lookaside Pointer Overwrite 

 PoolIndex Overwrite 

 PendingFrees Pointer Overwrite 

 Quota Process Pointer Overwrite 



ListEntry Overwrite (< Windows 7) 

 All free list (ListHeads) pool chunks are linked 

together by LIST_ENTRY structures 

 Vista and former versions do not validate the 

structures’ forward and backward pointers 

 A ListEntry overwrite may be leveraged to trigger a 

write-4 in the following situations 

 Unlink in merge with next pool chunk 

 Unlink in merge with previous pool chunk 

 Unlink in allocation from ListHeads[n] free list 

 Discussed in Kortchinsky[2008] and SoBeIt[2005] 
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ListEntry Flink Overwrite 

 Windows 7 uses safe unlinking to validate the 

LIST_ENTRY pointers of a chunk being unlinked 

 In allocating a pool chunk from a ListHeads free list, 

the kernel fails to properly validate its forward link 

 The algorithm validates the ListHeads[n] LIST_ENTRY 

structure instead 

 Overwriting the forward link of a free chunk may 

cause the address of ListHeads[n] to be written to an 

attacker controlled address 

 Target ListHeads[n] list must hold at least two free chunks 
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ListEntry Flink Overwrite 

 In the following output, the address of ListHeads[n] 

(esi) in the pool descriptor is written to an attacker 

controlled address (eax) 

 Pointers are not sufficiently validated when allocating 

a pool chunk from the free list 

eax=80808080 ebx=829848c0 ecx=8cc15768 edx=8cc43298 esi=82984a18 edi=829848c4 

eip=8296f067 esp=82974c00 ebp=82974c48 iopl=0         nv up ei pl zr na pe nc 

cs=0008  ss=0010  ds=0023  es=0023  fs=0030  gs=0000             efl=00010246 

 

nt!ExAllocatePoolWithTag+0x4b7: 

8296f067 897004          mov     dword ptr [eax+4],esi ds:0023:80808084=???????? 



ListEntry Flink Overwrite 

 After unlink, the attacker may control the address of 

the next allocated entry 

 ListHeads[n].Flink = FakeEntry 

 FakeEntry can be safely unlinked as its blink was 

updated to point back to ListHeads[n] 

 FakeEntry.Blink = ListHeads[n] 

 If a user-mode pointer is used in the overwrite, the 

attacker could fully control the contents of the next 

allocation 
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Lookaside Pointer Overwrite 

 Pool chunks and pool pages on lookaside lists are 

singly-linked 

 Each entry holds a pointer to the next entry 

 Overwriting a next pointer may cause the kernel pool 

allocator to return an attacker controlled address 

 A pool chunk is freed to a lookaside list if the 

following hold 

 BlockSize <= 0x20 for paged/non-paged pool chunks 

 BlockSize <= 0x19 for paged session pool chunks 

 Lookaside list for target BlockSize is not full 

 Hot/cold page separation is not used 

 



Lookaside Pointer Overwrite (Chunks) 
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Lookaside Pointer Overwrite (Pages) 

 A pool page is freed to a lookaside list if the following 

hold 

 NumberOfPages = 1 for paged pool pages 

 NumberOfPages <= 3 for non-paged pool pages 

 Lookaside list for target page count is not full 

 Size limit determined by physical page count in system 

 A pointer overwrite of lookaside pages requires at 

most a pointer-wide overflow 

 No pool headers on free pool pages! 

 Partial pointer overwrites may also be sufficient 
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PendingFrees Pointer Overwrite 

 Pool chunks waiting to be freed are stored in the 

pool descriptor deferred free list 

 Singly-linked (similar to lookaside list) 

 Overwriting a chunk’s next pointer will cause an 

arbitrary address to be freed 

 Inserted in the front of ListHeads[n] 

 Next pointer must be NULL to end the linked list 

 In freeing a user-mode address, the attacker may 

control the contents of subsequent allocations 

 Must be made from the same process context 



PendingFrees Pointer Overwrite 
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PendingFrees Pointer Overwrite Steps 

 Free a chunk to the deferred free list 

 Overwrite the chunk’s next pointer 

 Or any of the deferred free list entries (32 in total) 

 Trigger processing of the deferred free list 

 Attacker controlled pointer freed to designated free list 

 Force allocation of the controlled list entry 

 Allocator returns user-mode address 

 Corrupt allocated entry 

 Trigger use of corrupted entry 



PoolIndex Overwrite 

 A pool chunk’s PoolIndex denotes an index into the 

associated pool descriptor array 

 For paged pools, PoolIndex always denotes an index 

into the nt!ExpPagedPoolDescriptor array 

 On checked builds, the index value is validated in a 

compare against nt!ExpNumberOfPagedPools 

 On free (retail) builds, the index is not validated 

 For non-paged pools, PoolIndex denotes an index 

into nt!ExpNonPagedPoolDescriptor when there 

are multiple NUMA nodes 

 PoolIndex is not validated on free builds 
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PoolIndex Overwrite 

 A malformed PoolIndex may cause an allocated pool 

chunk to be freed to a null-pointer pool descriptor 

 Controllable with null page allocation 

 Requires a 2 byte pool overflow 

 When linking in to a controlled pool descriptor, the 

attacker can write the address of the freed chunk to 

an arbitrary location 

 No checks performed when “linking in” 

 All ListHeads entries are fully controlled 

 ListHeads[n].Flink->Blink = FreedChunk 
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PoolIndex Overwrite + Coalescing 

 If delayed frees are not used, the PoolIndex attack 

writes a kernel pool address to an arbitrary location 

 ListHeads[n].Flink->Blink = FreedChunk 

 We can extend this to an arbitrary write of a null-

page address by coalescing the freed (corrupted) 

chunk 

 E.g. free an adjacent pool chunk 

 This will cause the initial freed chunk to be unlinked 

from the free list and update the Blink with a pointer 

back to the ListHeads entry (null-page) 



PoolIndex Overwrite + Coalescing 

HalDispatchTable 

Blink 

0x140
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Target Address 

(e.g. HalDispatchTable) 

Pool Header 
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xHalQuerySystemInformation 
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+0 
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page address after unlink 

HalDispatchTable 

Blink 

0x140

+ N*8 

Corrupted pool chunk is 

coalesced with adjacent free 

+0 

ListHeads Entry 



PoolIndex Overwrite (Delayed Frees) 

 If delayed pool frees is enabled, the same effect can 

be achieved by creating a fake PendingFrees list 

 First entry should point to a user crafted chunk 

 The PendingFreeDepth field of the pool descriptor 

should be >= 0x20 to trigger processing of the 

PendingFrees list 

 The free algorithm of ExDeferredFreePool does 

basic validation on the crafted chunks 

 Coalescing / safe unlinking 

 The freed chunk should have busy bordering chunks 



PoolIndex Overwrite (Delayed Frees) 
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Data 

Pool Header 

Next 

nt!ExpPagedPoolDescriptor 
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into ListHeads[n] 

Flink 
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PoolIndex Overwrite (Example) 

 In controlling the PendingFrees list, a user-controlled 

virtual address (eax) can be written to an arbitrary 

destination address (esi) 

 In turn, this can be used to corrupt function pointers 

used by the kernel to execute arbitrary code 

eax=20000008 ebx=000001ff ecx=000001ff edx=00000538 esi=80808080 edi=00000000 

eip=8293c943 esp=9c05fb20 ebp=9c05fb58 iopl=0         nv up ei pl nz na po nc 

cs=0008  ss=0010  ds=0023  es=0023  fs=0030  gs=0000             efl=00010202 

 

nt!ExDeferredFreePool+0x2e3: 

8293c943 894604          mov     dword ptr [esi+4],eax ds:0023:80808084=???????? 



Quota Process Pointer Overwrite 

 Quota charged pool allocations store a pointer to the 

associated process object 

 ExAllocatePoolWithQuotaTag(…) 

 x86: last four bytes of pool body 

 x64: last eight bytes of pool header 

 Upon freeing a pool chunk, the quota is released and 

the process object is dereferenced 

 The object’s reference count is decremented 

 Overwriting the process object pointer could allow an 

attacker to free an in-use process object or corrupt 

arbitrary memory 



Quota Process Pointer Overwrite 
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Quota Process Pointer Overwrite 

 Quota information is stored in a 

EPROCESS_QUOTA_BLOCK structure 

 Pointed to by the EPROCESS object 

 Provides information on limits and how much quota is 

being used 

 On free, the charged quota is returned by subtracting 

the size of the allocation from the quota used 

 An attacker controlling the quota block pointer could 

decrement the value of an arbitrary address 

 More on this later! 



Arbitrary Pointer Decrement 

Pool Header 
Process 

Pointer 
Pool overflow Pool Header 

EPROCESS EPROCESS_QUOTA_BLOCK 

Address of executive process object 

controlled by the attacker 

Usage counter decremented 

on free, for which the address 

is controlled by the attacker 

Quota charged pool allocation (x86) 



Summary of Attacks 

 Corruption of busy pool chunk 

 BlockSize <= 0x20 

 PoolIndex + PoolType/BlockSize Overwrite 

 Quota Process Pointer Overwrite 

 BlockSize > 0x20 

 PoolIndex (+PoolType) Overwrite 

 Quota Process Pointer Overwrite 

 Corruption of free pool chunk 

 BlockSize <= 0x20 

 Lookaside Pointer Overwrite 

 BlockSize > 0x20 

 ListEntry Flink Overwrite / PendingFrees Pointer Overwrite 



Case Studies 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Case Study Agenda 

 Two pool overflow vulnerabilities 

 Both perceived as difficult to exploit 

 CVE-2010-3939 (MS10-098) 

 Win32k CreateDIBPalette() Pool Overflow Vulnerability 

 CVE-2010-1893 (MS10-058) 

 Integer Overflow in Windows Networking Vulnerability 



CVE-2010-3939 (MS10-098) 

 Pool overflow in win32k!CreateDIBPalette() 

 Discovered by Arkon 

 Function did not validate the number of color entries in 

the color table used by a bitmap 

 BITMAPINFOHEADER.biClrUsed 

 Every fourth byte of the overflowing buffer was set to 0x4 

 Can only reference 0x4xxxxxx addresses (user-mode) 

 PoolType is always set to NonPaged 

Pool Header 

Pool Header 

X X X 0x2 

PoolType = NonPaged | InUse 

(0x2 due to bit alignment of field on x86) 

Pool overflow 



CVE-2010-3939 (MS10-098) 

 The attacker could coerce the pool allocator to return 

a user-mode pool chunk 

 ListEntry Flink Overwrite 

 Lookaside Overwrite 

 Requires the kernel pool to be cleaned up in order 

for execution to continue safely 

 Repair/remove broken linked lists 

Pool Header 

Pool Header Next Pointer 

0x4xxxxxx Pool overflow 



CVE-2010-3939 (MS10-098) 

 Vulnerable buffer is also quota charged 

 Can overwrite the process object pointer (x86) 

 No pool chunks are corrupted (clean!) 

 Tactic: Decrement the value of a kernel-mode 

window object procedure pointer 

 Trigger the vulnerability n-times until it points to user-

mode memory and call the procedure 

Pool Header Pool Header 
Process 

Pointer 
Pool overflow 

Quota charged allocation 



Locating Window Objects 

 Via Window Manager (USER) Handle Table 

 CsrClientConnectToServer (USERSRV_INDEX) 

 Windows 7: user32!gSharedInfo 

 Windows XP: user32!UserRegisterWowHandlers 

 Via User-Mode Mapped Window Object 

 NtUserCallOneParam(…)  win32k!_MapDesktopObject 

 Patch any routine that calls user32!ValidateHwnd to return 

the window object pointer (user-mode) 

 E.g. IsServerSideWindow() 



Handle Table From User-Mode 



Kernel-Mode -> User-Mode Address 

 User-space address of desktop heap objects are 

computed using ulClientDelta  

 NtCurrentTeb()->Win32ClientInfo->ulClientDelta 

Desktop Heap 

Window 

User Kernel 

Cursor 

Desktop Heap 

Window Cursor 

ulClientDelta 



Window Objects from User-Mode 

window procedure 

Kernel window 

object pointer 



Retrieving Window Object Pointer 



Steps 

 Create a default procedure window 

 win32k!xxxDefWindowProc 

 Locate the window object in kernel memory 

 Corrupt the window procedure pointer 

 SendMessage(hwnd,…) 



CVE-2010-3939 (MS10-098) 

 Quota Process Pointer Overwrite 

 Demo 



CVE-2010-1893 (MS10-058) 

 Integer overflow in 

tcpip!IppSortDestinationAddresses() 

 Discovered by Matthieu Suiche 

 Affected Windows 7/2008 R2 and Vista/2008 

 Function did not use safe-int functions consistently 

 Could result in an undersized buffer allocation, 

subsequently leading to a pool overflow 

 



IppSortDestinationAddresses() 

 Sorts a list of IPv6 and IPv4 destination addresses 

 Each address is a SOCKADDR_IN6 record 

 Reachable from user-mode by calling WSAIoctl() 

 Ioctl: SIO_ADDRESS_LIST_SORT 

 Buffer: SOCKET_ADDRESS_LIST structure 

 Allocates buffer for the address list 

 iAddressCount * sizeof(SOCKADDR_IN6) 

 No overflow checks in multiplication 

 
typedef struct _SOCKET_ADDRESS_LIST { 

  INT            iAddressCount; 

  SOCKET_ADDRESS Address[1]; 

} SOCKET_ADDRESS_LIST, *PSOCKET_ADDRESS_LIST; 



IppFlattenAddressList() 

 Copies the user provided address list to the 

allocated kernel pool chunk 

 An undersized buffer could result in a pool overflow 

 Overflows the next pool chunk with the size of an address 

structure (0x1c bytes) 

 Stops copying records if the size != 0x1c or the 

protocol family != AF_INET6 (0x17) 

 Possible to avoid trashing the kernel pool completely 

 The protocol check is done after the memcpy() 

 We can overflow using any combination of bytes 

 

 

 



Pool Overflow 

Pool 

Header 

Address 

Record 
Chunk data 

Address 

Record 

Address 

Record 
Pool overflow 

Pool 

Header 

Blocksize padding 

Pool chunk in which 

the overflow occurs 

Corrupted memory 

(0x1c bytes minimum) 

SOCKADDR_IN6 

structure (0x1c bytes) 



Exploitation Tactics 

 Can use the PoolIndex attack to extend the pool 

overflow to an arbitrary memory write 

 Must overwrite a busy chunk 

 Overwritten chunk must be freed to ListHeads lists 

 BlockSize > 0x20 

 Or… fill the lookaside list 

 To overflow the desired pool chunk, we must 

defragment and manipulate the kernel pool 

 Allocate chunks of the same size 

 Create “holes” by freeing every other chunk 



Filling the Kernel Pool 

 What do we use to fill the pool ? 

 Depends on the pool type 

 Should be easy to allocate and free 

 NonPaged Pool 

 NT objects (low overhead) 

 Paged Pool 

 Unicode strings (e.g. object properties) 

 Session Paged Pool 

 Window Manager (USER) and GDI objects 



Kernel Objects in Pool Manipulation 

 Trivial to obtain the kernel pointers for executive, 

window manager, and GDI objects 

 Allows precise control in manipulating kernel pools 

 Window Manager (USER) Objects 

 CsrClientConnectToServer(USERSRV_INDEX) 

 Windows 7: user32!gSharedInfo 

 GDI Objects 

 Peb()->GdiSharedHandleTable 

 NT Objects 

 NtQuerySystemInformation(SystemHandleInfo…) 



Filling the Kernel Pool (NT Objects) 

NT Object 

#1 

NT Object 

#2 

NT Object 

#3 

NT Object 

#4 

NT Object 

#5 

NT Object 

#6 

NonPaged pool page 

NT Object 

#7 

NT Object 

#8 

First pool page 

allocation (offset 0) 

Second page allocation 

Offset: PAGE_SIZE – size 

NtCreateIoCompletion 

Handle 

NtQuerySystemInformation 

(SystemHandleInformation) 

Handle table entry info 

Object address 

User Kernel 



Enumerating Object Addresses 

 For NT objects, we use NtQuerySystemInformation 

to enumerate the objects’ kernel addresses 

 SystemHandleInformation 

 Before creating any holes (using NtClose), we 

ensure that we control the surrounding chunks 

 Avoid coalescing or corruption of uncontrolled chunks 

 

Other 

chunk 

NT Object 

#6 

NT Object 

#5 

NT Object 

#4 

NT Object 

#7 

Chunk to be freed 



Kernel Pool Manipulation 

 If delayed frees are used (most systems), we can create 

holes for every second allocation 

 The vulnerable buffer is later allocated in one of these holes 

 Freeing the remaining allocations after triggering the 

vulnerability mounts the PoolIndex attack 

kd> !pool @eax 

 Pool page 976e34c8 region is Nonpaged pool 

 

 976e32e0 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

 976e3340 size: 60 previous size: 60 (Free) IoCo 

 976e33a0 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

 976e3400 size: 60 previous size: 60 (Free) IoCo 

 976e3460 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

*976e34c0 size: 60 previous size: 60 (Allocated) *Ipas 

        Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys 

 976e3520 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

 976e3580 size: 60 previous size: 60 (Free) IoCo 

 976e35e0 size: 60 previous size: 60 (Allocated) IoCo (Protected) 

 976e3640 size: 60 previous size: 60 (Free) IoCo 



Coalescing for Fun and Profit 

 If delayed frees are not used, we end up writing a 

kernel pointer to an arbitrary location 

 The address of the corrupted pool chunk 

 We use the coalescing trick to write a pointer back to 

our null-page descriptor instead 

 Trigger an unlink of the chunk that was linked into our 

crafted pool descriptor 

 Requires three sequentially allocated objects 

 One for our vulnerable buffer to fall into (after free) 

 One that will be corrupted 

 One that will be merged with the corrupted chunk 



Coalescing for Fun and Profit 
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Addressing Multi-Core Systems 

 On multi-core systems, multiple cores/threads can 

be operating on the same pool 

 E.g. only one non-paged pool 

 We can reduce operations on free lists by populating 

the lookasides of each logical processor 

 SetProcessAffinityMask() / SetThreadAffinityMask() 

 Lookasides are periodically sized according to their 

activity by the balance set manager 

 Determined by allocate/free hits and misses 

 Increasing the size can reduce the chance of other 

threads interfering with the pool manipulation 



Populating Lookaside Lists 

KPCR #2 

 

KPCR #1 
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activity! 



Lookaside List Information 

 Can be obtained via NtQuerySystemInformation() using 
SystemLookasideInformation  

 Returns information on all the lookaside lists 

 Can be used to measure lookaside list activity 

 Each entry is represented as a 
SYSTEM_LOOKASIDE_INFORMATION structure 

 Ordered by (logical) processor 

typedef struct _SYSTEM_LOOKASIDE_INFORMATION 

{ 

    USHORT CurrentDepth; 

    USHORT MaximumDepth; 

    ULONG TotalAllocates; 

    ULONG AllocateMisses; 

    ULONG TotalFrees; 

    ULONG FreeMisses; 

    ULONG Type; 

    ULONG Tag; 

    ULONG Size; 

} SYSTEM_LOOKASIDE_INFORMATION, *PSYSTEM_LOOKASIDE_INFORMATION; 



Possible Reliability Issues (1) 

 1. Corrupted chunk is freed to a lookaside, thus 

breaking the PoolIndex attack 

 Even if we fill the lookaside, there may still be preempted 

threads that allocate from it 

 Can be addressed by maximizing the depth of the 

list while waiting for the balance set manager to 

reduce its limit 

 The lookaside list will have more entries than it can hold 

 Lookasides could also be avoided altogether by using a 

larger block size 



Possible Reliability Issues (2) 

 2. Buffer we overflow from uses a pool chunk not 

freed by us 

 Could happen if unanticipated frees were made to the 

lookaside list while filling 

 Less likely to happen on multi-core systems as we have 

multiple lookaside lists for each block size 

 Exploit reliability may improve with additional cores! 

 

 

 



Possible Reliability Issues (3) 

 3. Buffer we overflow from (after free) is reallocated 

by a different process and coalesced with the 

corrupted chunk 

 Triggers an unlink referencing the null-page (not mapped) 

 Can be addressed by overflowing from the end of a 

page into a new page 

 Requires two sequentially allocated objects on the 

beginning of the next page 



Page Boundary Pool Allocation 

 We can improve reliability by only creating holes at 

the end of a pool page 

kd> !pool @eax 

Pool page 8b518fc8 region is Nonpaged pool 

 8b518000 size:   40 previous size:    0  (Allocated)  Even (Protected) 

 8b518040 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 … 

 8b518f00 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 8b518f40 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 8b518f80 size:   40 previous size:   40  (Allocated)  Even (Protected) 

*8b518fc0 size:   40 previous size:   40  (Allocated) *Ipas 

  Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys 

  

 8b519000 size:   40 previous size:    0  (Allocated)  Even (Protected) 

 8b519040 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 8b519080 size:   40 previous size:   40  (Allocated)  Even (Protected) 

 8b5190c0 size:   40 previous size:   40  (Allocated)  Even (Protected) 

Next page Does not merge with 

the previous chunk 



Page Boundary Pool Overflow 

Vulnerable 

buffer NT Object NT Object NT Object ... 
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NT Object 
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Pool Corruption Details 

Vulnerable buffer Object Data 
Pool 

Header 
Quota 

Header 

Object 

Header 

+0x000 PreviousSize     : 0y000000000 (0) 

+0x000 PoolIndex        : 0y0000101 (0x5) 

+0x002 BlockSize        : 0y000001000 (0x8) 

+0x002 PoolType         : 0y0000011 (0x3) 

+0x000 Ulong1           : 0x6080a00 

+0x004 PoolTag          : 0xef436f49 

+0x004 AllocatorBackTraceIndex : 0x6f49 

+0x006 PoolTagHash      : 0xef43 

+0x000 PagedPoolCharge  : 0 

+0x004 NonPagedPoolCharge : 0x40 

+0x008 SecurityDescriptorCharge : 0 

+0x00c SecurityDescriptorQuotaBlock : (null)  

+0x000 PointerCount     : 0n1 

… 

Event object 

41410017 41414141 41414141 41414141 

41414141 41414141 41414141 41410017 

41414141 41414141 41414141 41414141 

41414141 41414141 



CVE-2010-1893 (MS10-058) 

 Kernel pool manipulation + PoolIndex overwrite 

 Demo 



Kernel Pool Hardening 
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ListEntry Flink Overwrites 

 Can be addressed by properly validating the flink 

and blink of the chunk being unlinked 

 Yep, that’s it... 



Lookaside Pointer Overwrites 

 Lookaside lists are inherently insecure 

 Unchecked embedded pointers 

 All pool chunks must reserve space for at least the 

size of a LIST_ENTRY structure 

 Two pointers (flink and blink) 

 Chunks on lookaside lists only store a single pointer 

 Could include a cookie for protecting against pool 

overflows 

 Cookies could also be used by PendingFrees list 

entries 
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PoolIndex Overwrites 

 Can be addressed by validating the PoolIndex value 

before freeing a pool chunk 

 E.g. is PoolIndex > nt!ExpNumberOfPagedPools ? 

 Also required the NULL-page to be mapped 

 Could deny mapping of this address in non-privileged 

processes 

 Would probably break some applications (e.g. 16-bit 

WOW support) 



Quota Process Pointer Overwrites 

 Can be addressed by encoding or obfuscating the 

process pointer 

 E.g. XOR’ed with a constant unknown to the attacker 

 Ideally, no pointers should be embedded in pool 

chunks 

 Pointers to structures that are written to can easily be 

leveraged to corrupt arbitrary memory 



Conclusion 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 



Future Work 

 Pool content corruption 

 Object function pointers 

 Data structures 

 Remote kernel pool exploitation 

 Very situation based 

 Kernel pool manipulation is hard 

 Attacks that rely on null page mapping are infeasible 

 Kernel pool manipulation 

 Becomes more important as generic vectors are 

addressed 



Conclusion 

 The kernel pool was designed to be fast 

 E.g. no pool header obfuscation 

 In spite of safe unlinking, there is still a big window of 

opportunity in attacking pool metadata 

 Kernel pool manipulation is the key to success 

 Attacks can be addressed by adding simple checks 

or adopting exploit prevention features from the 

userland heap 

 Header integrity checks 

 Pointer encoding 

 Cookies 



References 

 SoBeIt[2005] – SoBeIt 
How to exploit Windows kernel memory pool, 
X’con 2005 

 Kortchinsky[2008] – Kostya Kortchinsky 
Real-World Kernel Pool Exploitation, 
SyScan 2008 Hong Kong 

 Mxatone[2008] – mxatone 
Analyzing Local Privilege Escalations in win32k, 
Uninformed Journal, vol. 10 article 2 

 Beck[2009] – Peter Beck 
Safe Unlinking in the Kernel Pool, 
Microsoft Security Research & Defense (blog) 



MS11-034 

Modern Kernel Pool Exploitation: 

Attacks and Techniques 

 



Overview 

 All the vulnerabilities addressed by this bulletin were 
related to user-mode callbacks 
 Locking issues 

 Null pointer dereferences 

 Invoking user-mode callbacks 
 Event hooks (SetWinEventHook) 

 Window hooks (SetWindowsHook) 

 Some functions call back into user-mode regardless of 
hooks 

 Pointer to callback function table stored in the PEB 
 Peb()->KernelCallbackTable 

 Hook this to do whatever during callbacks 

 



NTOSKRNL 

USER32 

NTDLL 

nt!KeUserModeCallback 
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kernel 

KeUserModeCallback 

KiUserCallbackDispatcher 

KernelCallbackTable 

NtCallbackReturn 

Switch to kernel 

callback stack 

__ClientLoadLibrary 

__ClientLoadMenu 

__ClientEventCallback 

NtCallbackReturn 

Set TRAP_FRAME EIP to 

KiUserCallbackDispatcher  
Restore original 

TRAP_FRAME EIP 

Restore original 

kernel stack 

CallbackFunction 
User application 

Hook for fun and profit 



Use After Free Vulnerabilities 

 All Window Manager (USER) objects are preceded 

by a HEAD structure 

 Defines handle value and lock count 

 Whenever a callback occurs, objects subsequently 

used has to be locked 

 E.g. if a window is insufficiently locked, a user could call 

DestroyWindow to free it 

 Similarly, any buffer that can be reallocated or freed 

(e.g. an array used by an object) has to be checked 

upon callback return 

 E.g. menu items array 



Ex #1: Window Object Use-After-Free 

 Microsoft previously patched two vulnerabilities in 

win32k!xxxCreateWindowEx 

 Window Creation Vulnerability (MS10-032) 

 Function Callback Vulnerability (MS10-048) 

 Both issues dealt with improper validation of 

changes occurring during callbacks 

 None of the patches ensured that the window object 

returned by the CBT hook was properly locked 

 Hence, an attacker could destroy the window object 

(in a subsequent callback) and coerce the kernel into 

operating on freed memory 



Ex #2: Cursor Object Use-After-Free 

 In using a drag cursor while dragging an object, 

win32k!xxxDragObject did not lock the original 

cursor 

 An attacker could destroy the original cursor in a 

user-mode callback such as an event hook 

 Consequently, the kernel would operate on freed 

memory upon restoring the original cursor 

 

 



Exploitability 

 In most cases, the attacker can allocate and control 
the bytes that are freed 
 E.g. using APIs that allocate strings 

 Embedded object pointers in the freed object may 
allow an attacker to increment (lock) or decrement 
(unlock) an arbitrary address 

 Common behavior of locking routines 

 Some targets 
 KTHREAD.PreviousMode 

 kernel trusts argument pointers when PreviousMode == 0 

 HANDLEENTRY.bType 

 destroy routine for free type (0) is null (mappable by user) 



Questions ? 

 Email: kernelpool@gmail.com 

 Blog: http://mista.nu/blog 

 Slides/Paper: http://mista.nu/research 

 Twitter: @kernelpool 
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