
Modern Kernel Pool Exploitation:

Attacks and Techniques

Tarjei Mandt | Infiltrate 2011

About Me

 Security Researcher at Norman

 Malware Detection Team (MDT)

 Focused on exploit detection / mitigation

 Interests

 Vulnerability research

 Operating systems internals

 Low-level stuff

 Found some kernel bugs recently

 MS10-073, MS10-098, MS11-012, ...

 Some in MS11-034

Agenda

 Introduction

 Kernel Pool Internals

 Kernel Pool Attacks

 Case Study / Demo

 Kernel Pool Hardening

 Conclusion

Introduction

Modern Kernel Pool Exploitation:

Attacks and Techniques

Introduction

 Exploit mitigations such as DEP and ASLR do not

prevent exploitation in every case

 JIT spraying, memory leaks, etc.

 Privilege isolation is becoming an important

component in confining application vulnerabilities

 Browsers and office applications employ “sandboxed”

render processes

 Relies on (security) features of the operating system

 In turn, this has motivated attackers to focus their

efforts on privilege escalation attacks

 Arbitrary ring0 code execution → OS security undermined

The Kernel Pool

 Resource for dynamically allocating memory

 Shared between all kernel modules and drivers

 Analogous to the user-mode heap

 Each pool is defined by its own structure

 Maintains lists of free pool chunks

 Highly optimized for performance

 No kernel pool cookie or pool header obfuscation

 The kernel executive exports dedicated functions for

handling pool memory

 ExAllocatePool* and ExFreePool* (discussed later)

Kernel Pool Exploitation

 An attacker’s ability to leverage pool corruption

vulnerabilities to execute arbitrary code in ring 0

 Similar to traditional heap exploitation

 Kernel pool exploitation requires careful modification

of kernel pool structures

 Access violations are likely to end up with a bug check

(BSOD)

 Up until Windows 7, kernel pool overflows could be

generically exploited using write-4 techniques

 SoBeIt[2005]

 Kortchinsky[2008]

Previous Work

 Primarily focused on XP/2003 platforms

 How To Exploit Windows Kernel Memory Pool

 Presented by SoBeIt at XCON 2005

 Proposed two write-4 exploit methods for overflows

 Real World Kernel Pool Exploitation

 Presented by Kostya Kortchinsky at SyScan 2008

 Discussed four write-4 exploitation techniques

 Demonstrated practical exploitation of MS08-001

 All the above exploitation techniques were

addressed in Windows 7 (Beck[2009])

Contributions

 Elaborate on the internal structures and changes

made to the Windows 7 (and Vista) kernel pool

 Identify weaknesses in the Windows 7 kernel pool

and show how an attacker may leverage these to

exploit pool corruption vulnerabilities

 Propose ways to thwart the discussed attacks and

further harden the kernel pool

Kernel Pool Internals

Modern Kernel Pool Exploitation:

Attacks and Techniques

Kernel Pool Fundamentals

 Kernel pools are divided into types

 Defined in the POOL_TYPE enum

 Non-Paged Pools, Paged Pools, Session Pools, etc.

 Each kernel pool is defined by a pool descriptor

 Defined by the POOL_DESCRIPTOR structure

 Tracks the number of allocs/frees, pages in use, etc.

 Maintains lists of free pool chunks

 The initial descriptors for paged and non-paged

pools are defined in the nt!PoolVector array

 Each index points to an array of one or more descriptors

Kernel Pool Descriptor (Win7 RTM x86)

 kd> dt nt!_POOL_DESCRIPTOR
 +0x000 PoolType : _POOL_TYPE

 +0x004 PagedLock : _KGUARDED_MUTEX

 +0x004 NonPagedLock : Uint4B

 +0x040 RunningAllocs : Int4B

 +0x044 RunningDeAllocs : Int4B

 +0x048 TotalBigPages : Int4B

 +0x04c ThreadsProcessingDeferrals : Int4B

 +0x050 TotalBytes : Uint4B

 +0x080 PoolIndex : Uint4B

 +0x0c0 TotalPages : Int4B

 +0x100 PendingFrees : Ptr32 Ptr32 Void

 +0x104 PendingFreeDepth: Int4B

 +0x140 ListHeads : [512] _LIST_ENTRY

Non-Paged Pool

 Non-pagable system memory
 Guaranteed to reside in physical memory at all times

 Number of pools stored in
nt!ExpNumberOfNonPagedPools

 On uniprocessor systems, the first index of the
nt!PoolVector array points to the non-paged pool
descriptor

 kd> dt nt!_POOL_DESCRIPTOR poi(nt!PoolVector)

 On multiprocessor systems, each node has its own
non-paged pool descriptor
 Pointers stored in nt!ExpNonPagedPoolDescriptor

array

Paged Pool

 Pageable system memory
 Can only be accessed at IRQL < DPC/Dispatch level

 Number of paged pools defined by
nt!ExpNumberOfPagedPools

 On uniprocessor systems, four (4) paged pool
descriptors are defined

 Index 1 through 4 in nt!ExpPagedPoolDescriptor

 On multiprocessor systems, one (1) paged pool
descriptor is defined per node

 One additional paged pool descriptor is defined for
prototype pools / full page allocations
 Index 0 in nt!ExpPagedPoolDescriptor

Session Paged Pool

 Pageable system memory for session space

 E.g. Unique to each logged in user

 Initialized in nt!MiInitializeSessionPool

 On Vista, the pool descriptor pointer is stored in

nt!ExpSessionPoolDescriptor (session space)

 On Windows 7, a pointer to the pool descriptor from

the current thread is used

 KTHREAD->Process->Session.PagedPool

 Non-paged session allocations use the global non-

paged pools

Pool Descriptor Free Lists (x86)

 Each pool descriptor has a

ListHeads array of 512 doubly-

linked lists of free chunks of the

same size

 8 byte granularity

 Used for allocations up to 4080

bytes

 Free chunks are indexed into the

ListHeads array by block size

 BlockSize: (NumBytes+0xF) >> 3

 Each pool chunk is preceded by

an 8-byte pool header

0

1

2

3

4

..

..

..

..

511

8 bytes

24 bytes

8 bytes

PoolDescriptor.ListHeads

24 bytes data +

8 byte header

4080 bytes

Kernel Pool Header (x86)

 kd> dt nt!_POOL_HEADER

 +0x000 PreviousSize : Pos 0, 9 Bits

 +0x000 PoolIndex : Pos 9, 7 Bits

 +0x002 BlockSize : Pos 0, 9 Bits

 +0x002 PoolType : Pos 9, 7 Bits

 +0x004 PoolTag : Uint4B

 PreviousSize: BlockSize of the preceding chunk

 PoolIndex: Index into the associated pool descriptor array

 BlockSize: (NumberOfBytes+0xF) >> 3

 PoolType: Free=0, Allocated=(PoolType|2)

 PoolTag: 4 printable characters identifying the code
responsible for the allocation

Kernel Pool Header (x64)

 kd> dt nt!_POOL_HEADER

 +0x000 PreviousSize : Pos 0, 8 Bits

 +0x000 PoolIndex : Pos 8, 8 Bits

 +0x000 BlockSize : Pos 16, 8 Bits

 +0x000 PoolType : Pos 24, 8 Bits

 +0x004 PoolTag : Uint4B

 +0x008 ProcessBilled : Ptr64 _EPROCESS

 BlockSize: (NumberOfBytes+0x1F) >> 4

 256 ListHeads entries due to 16 byte block size

 ProcessBilled: Pointer to process object charged for

the pool allocation (used in quota management)

Free Pool Chunks

 If a pool chunk is freed to a pool descriptor ListHeads list,

the header is followed by a LINK_ENTRY structure

 Pointed to by the ListHeads doubly-linked list

 kd> dt nt!_LIST_ENTRY

+0x000 Flink : Ptr32 _LIST_ENTRY

+0x004 Blink : Ptr32 _LIST_ENTRY

..

n

Header Header

Flink

Blink

..

Flink

Blink

Flink

Blink

PoolDescriptor.ListHeads

Blocksize n

Free chunks

Lookaside Lists

 Kernel uses lookaside lists for faster

allocation/deallocation of small pool chunks

 Singly-linked LIFO lists

 Optimized for performance – e.g. no checks

 Separate per-processor lookaside lists for pagable

and non-pagable allocations

 Defined in the Processor Control Block (KPRCB)

 Maximum BlockSize being 0x20 (256 bytes)

 8 byte granularity, hence 32 lookaside lists per type

 Each lookaside list is defined by a

GENERAL_LOOKASIDE_POOL structure

General Lookaside (Win7 RTM x86)

 kd> dt _GENERAL_LOOKASIDE_POOL
 +0x000 ListHead : _SLIST_HEADER

 +0x000 SingleListHead : _SINGLE_LIST_ENTRY

 +0x008 Depth : Uint2B

 +0x00a MaximumDepth : Uint2B

 +0x00c TotalAllocates : Uint4B

 +0x010 AllocateMisses : Uint4B

 +0x010 AllocateHits : Uint4B

 +0x014 TotalFrees : Uint4B

 +0x018 FreeMisses : Uint4B

 +0x018 FreeHits : Uint4B

 +0x01c Type : _POOL_TYPE

 +0x020 Tag : Uint4B

 +0x024 Size : Uint4B

 […]

Lookaside Lists (Per-Processor)

PPNPagedLookasideList[32]

PPPagedLookasideList[32]

PPNPagedLookasideList[0]

PPNPagedLookasideList[2]

PPNPagedLookasideList[3]

PPNPagedLookasideList[n]

PPNPagedLookasideList[1]

ListHead

Next

Depth

PPNPagedLookasideList[31]

Header Header

Processor Control Block

KPRCB

KPCR

Next Next

Free lookaside chunks

Per-Processor Non-Paged

Lookaside Lists

Each per-processor lookaside list entry

(GENERAL_LOOKASIDE_POOL) is

0x48 bytes in size

Processor Control Region

(pointed to by FS segment selector)

Lookaside Lists (Session)

 Separate per-session lookaside lists for pagable

allocations

 Defined in session space (nt!ExpSessionPoolLookaside)

 Maximum BlockSize being 0x19 (200 bytes)

 Uses the same structure (with padding) as per-processor lists

 All processors use the same session lookaside lists

 Non-paged session allocations use the per-processor

non-paged lookaside list

 Lookaside lists are disabled if hot/cold separation is used

 nt!ExpPoolFlags & 0x100

 Used during system boot to increase speed and reduce the

memory footprint

Lookaside Lists (Session)

Lookaside[25]

Lookaside[0]

Lookaside[2]

Lookaside[3]

Lookaside[n]

Lookaside[1]

ListHead

Next

Depth

Lookaside[24]

Header Header

Session Space

MM_SESSION_SPACE

(nt!MmSessionSpace)

Next Next

Free lookaside chunks

Session Paged

Lookaside Lists

Each per-processor lookaside list entry

(GENERAL_LOOKASIDE) is 0x80

bytes in size

Large Pool Allocations

 Allocations greater than 0xff0 (4080) bytes

 Handled by the function nt!ExpAllocateBigPool

 Internally calls nt!MiAllocatePoolPages

 Requested size is rounded up to the nearest page size

 Excess bytes are put back at the end of the appropriate

pool descriptor ListHeads list

 Each node (e.g. processor) has 4 singly-linked

lookaside lists for big pool allocations

 1 paged for allocations of a single page

 3 non-paged for allocations of page count 1, 2, and 3

 Defined in KNODE (KPCR.PrcbData.ParentNode)

Large Pool Allocations

 If lookaside lists cannot be used, an allocation

bitmap is used to obtain the requested pool pages

 Array of bits that indicate which memory pages are in use

 Defined by the RTL_BITMAP structure

 The bitmap is searched for the first index that holds

the requested number of unused pages

 Bitmaps are defined for every major pool type with

its own dedicated memory

 E.g. nt!MiNonPagedPoolBitMap

 The array of bits is located at the beginning of the

pool memory range

Bitmap Search (Simplified)

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1

2. RtlFindClearBits(...)

1. MiAllocatePoolPages(NonPagedPool, 0x8000)

MiNonPagedPoolBitMap

3. RtlFindAndSetClearBits(...)

4. PageAddress = MiNonPagedPoolStartAligned + (BitOffset << 0xC)

Allocation Algorithm

 The kernel exports several allocation functions for

kernel modules and drivers to use

 All exported kernel pool allocation routines are

essentially wrappers for ExAllocatePoolWithTag

 The allocation algorithm returns a free chunk by

checking with the following (in order)

 Lookaside list(s)

 ListHeads list(s)

 Pool page allocator

 Windows 7 performs safe unlinking when pulling a

chunk from a free list (Beck[2009])

Pool Header

Safe Pool Unlinking

Flink

Blink

Pool Header

0x8080BBB0

0x8080AAA0

Pool Header

Flink

Blink

Pool Header

Pool Header

Flink

0x8080AAA0

0x8080BBB0

Blink

1. Chunk to be unlinked ...

2. Does next chunk’s

Blink point at the chunk

being unlinked ?

3. Does previous chunk’s

Flink point at the chunk

being unlinked ?

ExAllocatePoolWithTag (1/2)

 PVOID ExAllocatePoolWithTag(POOL_TYPE

PoolType, SIZE_T NumberOfBytes, ULONG Tag)

 If NumberOfBytes > 0xff0

 Call nt!ExpAllocateBigPool

 If PagedPool requested

 If (PoolType & SessionPoolMask) and BlockSize <= 0x19
 Try the session paged lookaside list

 Return on success

 Else If BlockSize <= 0x20
 Try the per-processor paged lookaside list

 Return on success

 Lock (session) paged pool descriptor (round robin)

ExAllocatePoolWithTag (2/2)

 Else (NonPagedPool requested)
 If BlockSize <= 0x20

 Try the per-processor non-paged lookaside list

 Return on success

 Lock non-paged pool descriptor (local node)

 Use ListHeads of currently locked pool

 For n in range(BlockSize,512)

 If ListHeads[n] is empty, try next BlockSize

 Safe unlink first entry and split if larger than needed

 Return on success

 If failed, expand the pool by adding a page

 Call nt!MiAllocatePoolPages

 Split entry and return on success

ExAllocatePoolWithTag

Splitting Pool Chunks

 If a chunk larger than the size requested is returned

from ListHeads[n], the chunk is split

 If chunk is page aligned, the requested size is allocated

from the front of the chunk

 If chunk is not page aligned, the requested size is

allocated at the end of the chunk

 The remaining fragment of the split chunk is put at

the tail of the proper ListHeads[n] list

Free Chunk

Splitting Pool Chunks

Free Pool

Page

1st alloc

Free Chunk

1st alloc

3rd alloc

PreviousSize == 0 :

Allocate chunk in the front

PreviousSize != 0 :

Allocate chunk at the end

4th alloc

2nd alloc

Free Algorithm

 The free algorithm inspects the pool header of the

chunk to be freed and frees it to the appropriate list

 Implemented by ExFreePoolWithTag

 Bordering free chunks may be merged with the freed

chunk to reduce fragmentation

 Windows 7 uses safe unlinking in the merging process

ExFreePoolWithTag (1/2)

 VOID ExFreePoolWithTag(PVOID Address, ULONG Tag)

 If Address (chunk) is page aligned

 Call nt!MiFreePoolPages

 If Chunk->BlockSize != NextChunk->PreviousSize

 BugCheckEx(BAD_POOL_HEADER)

 If (PoolType & PagedPoolSession) and BlockSize <= 0x19

 Put in session pool lookaside list

 Else If BlockSize <= 0x20 and pool is local to processor

 If (PoolType & PagedPool)

 Put in per-processor paged lookaside list

 Else (NonPagedPool)

 Put in per-processor non-paged lookaside list

 Return on sucess

ExFreePoolWithTag (2/2)

 If the DELAY_FREE pool flag is set

 If pending frees >= 0x20

 Call nt!ExDeferredFreePool

 Add to front of pending frees list (singly-linked)

 Else

 If next chunk is free and not page aligned

 Safe unlink and merge with current chunk

 If previous chunk is free

 Safe unlink and merge with current chunk

 If resulting chunk is a full page

 Call nt!MiFreePoolPages

 Else

 Add to front of appropriate ListHeads list

ExFreePoolWithTag

Merging Pool Chunks

Pool Header

(free)

Pool Header

(busy)

Pool Header

(free)

Pool Header

(free)

Pool Header

(busy)
unlinked chunk

Chunk to be freed

Next chunk unlinked

Merge with next

Pool Header

(busy)
BlockSize updated unlinked chunk

Pool Header

(free)
BlockSize updated

Previous chunk unlinked

Merge with previous Marked as free and returned

Delayed Pool Frees

 A performance optimization that frees several pool

allocations at once to amortize pool acquisition/release

 Briefly mentioned in mxatone[2008]

 Enabled when MmNumberOfPhysicalPages >= 0x1fc00

 Equivalent to 508 MBs of RAM on IA-32 and AMD64

 nt!ExpPoolFlags & 0x200

 Each call to ExFreePoolWithTag appends a pool chunk

to a singly-linked deferred free list specific to each pool

descriptor

 Current number of entries is given by PendingFreeDepth

 The list is processed by the function ExDeferredFreePool if it

has 32 or more entries

ExDeferredFreePool

 VOID ExDeferredFreePool(PPOOL_DESCRIPTOR
PoolDescriptor, BOOLEAN bMultiThreaded)

 For each entry on pending frees list

 If next chunk is free and not page aligned

 Safe unlink and merge with current chunk

 If previous chunk is free

 Safe unlink and merge with current chunk

 If resulting chunk is a full page

 Add to full page list

 Else

 Add to front of appropriate ListHeads list

 For each page in full page list

 Call nt!MiFreePoolPages

Free Pool Chunk Ordering

 Frees to the lookaside and pool descriptor ListHeads

are always put in the front of the appropriate list

 Exceptions are remaining fragments of split blocks which

are put at the tail of the list

 Blocks are split when the pool allocator returns chunks

larger than the requested size

 Full pages split in ExpBigPoolAllocation

 ListHeads[n] entries split in ExAllocatePoolWithTag

 Allocations are always made from the most recently

used blocks, from the front of the appropriate list

 Attempts to use the CPU cache as much as possible

Kernel Pool Attacks

Modern Kernel Pool Exploitation:

Attacks and Techniques

Overview

 Traditional ListEntry Attacks (< Windows 7)

 ListEntry Flink Overwrite

 Lookaside Pointer Overwrite

 PoolIndex Overwrite

 PendingFrees Pointer Overwrite

 Quota Process Pointer Overwrite

ListEntry Overwrite (< Windows 7)

 All free list (ListHeads) pool chunks are linked

together by LIST_ENTRY structures

 Vista and former versions do not validate the

structures’ forward and backward pointers

 A ListEntry overwrite may be leveraged to trigger a

write-4 in the following situations

 Unlink in merge with next pool chunk

 Unlink in merge with previous pool chunk

 Unlink in allocation from ListHeads[n] free list

 Discussed in Kortchinsky[2008] and SoBeIt[2005]

Pool Header

ListEntry Overwrite (Merge With Next)

List Entry

F
lin

k

B
lin

k

Pool Header

(busy)

Pool Header

(busy)

Pool overflow

Chunk to be freed

Pool Header List Entry

F
lin

k

B
lin

k

P
o
o
lT

y
p
e

Pool Header

(free)
unlinked chunk  write-4

When the overflowing chunk is freed, the next

bordering chunk is merged and unlinked

PoolType set to 0 (free)

Chunk size is updated to

accomodate the merged chunk

Pool Header

ListEntry Overwrite (Merge With Previous)

Pool Header

(busy)

Pool Header

(busy)

(busy) Pool overflow

Chunk to be freed

Pool Header

(busy)

F
lin

k

B
lin

k

Fake Header

(free)

P
re

v
io

u
s

S
iz

e

PreviousSize updated for

fake previous header

Pool Header

(busy)
(free) unlinked chunk  write-4

Use overflow to create a fake pool

header for merging freed chunk

When the corrupted chunk is freed, the fake previous

chunk is unlinked before being merged

PoolType set to 0 (free)

ListEntry Flink Overwrite

 Windows 7 uses safe unlinking to validate the

LIST_ENTRY pointers of a chunk being unlinked

 In allocating a pool chunk from a ListHeads free list,

the kernel fails to properly validate its forward link

 The algorithm validates the ListHeads[n] LIST_ENTRY

structure instead

 Overwriting the forward link of a free chunk may

cause the address of ListHeads[n] to be written to an

attacker controlled address

 Target ListHeads[n] list must hold at least two free chunks

The Not So Safe Unlink

L
is

tE
n
tr

y

Flink

Blink

Pool Header

Flink

Pool Header

Flink

FakeEntry

Blink Blink

Pool Descriptor ListHeads

ListHeads[n].Blink

(validated in safe unlink)

ListHeads[n].Flink

(validated in safe unlink)

Index for BlockSize n,

Flink points to first

chunk to be allocated

P
o
o
l o

v
e
rflo

w

Chunk to be unlinked

After unlink

• FakeEntry.Blink = ListHeads[n]

• ListHeads[n].Flink = FakeEntry

NextEntry.Blink

(validated in safe unlink)

PreviousEntry.Flink

(validated in safe unlink)

ListEntry Flink Overwrite

 In the following output, the address of ListHeads[n]

(esi) in the pool descriptor is written to an attacker

controlled address (eax)

 Pointers are not sufficiently validated when allocating

a pool chunk from the free list

eax=80808080 ebx=829848c0 ecx=8cc15768 edx=8cc43298 esi=82984a18 edi=829848c4

eip=8296f067 esp=82974c00 ebp=82974c48 iopl=0 nv up ei pl zr na pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010246

nt!ExAllocatePoolWithTag+0x4b7:

8296f067 897004 mov dword ptr [eax+4],esi ds:0023:80808084=????????

ListEntry Flink Overwrite

 After unlink, the attacker may control the address of

the next allocated entry

 ListHeads[n].Flink = FakeEntry

 FakeEntry can be safely unlinked as its blink was

updated to point back to ListHeads[n]

 FakeEntry.Blink = ListHeads[n]

 If a user-mode pointer is used in the overwrite, the

attacker could fully control the contents of the next

allocation

ListEntry Flink Overwrite

L
is

tE
n
tr

y

Flink

Blink

Pool Header

Flink FakeEntry

Blink

Pool Descriptor ListHeads

ListHeads[n].Blink

(validated in safe unlink)

ListHeads[n].Flink

(validated in safe unlink)

Index for BlockSize n,

Flink points to first

chunk to be allocated

Chunk to be

unlinked

FakeEntry.Blink

(updated in previous unlink

and validated in safe unlink)

PreviousEntry.Flink

(validated in safe unlink)

Next

FakeEntry

Lookaside Pointer Overwrite

 Pool chunks and pool pages on lookaside lists are

singly-linked

 Each entry holds a pointer to the next entry

 Overwriting a next pointer may cause the kernel pool

allocator to return an attacker controlled address

 A pool chunk is freed to a lookaside list if the

following hold

 BlockSize <= 0x20 for paged/non-paged pool chunks

 BlockSize <= 0x19 for paged session pool chunks

 Lookaside list for target BlockSize is not full

 Hot/cold page separation is not used

Lookaside Pointer Overwrite (Chunks)

Header

Next

arbitrary

address

PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

Per-Processor Non-

Paged Lookaside Lists P
o
o
l o

v
e
rflo

w

Pool overflow into a

lookaside list chunk

PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

After an allocation has been

made for BlockSize 2, the

Next pointer points to the

attacker supplied address

arbitrary

address

Lookaside Pointer Overwrite (Pages)

 A pool page is freed to a lookaside list if the following

hold

 NumberOfPages = 1 for paged pool pages

 NumberOfPages <= 3 for non-paged pool pages

 Lookaside list for target page count is not full

 Size limit determined by physical page count in system

 A pointer overwrite of lookaside pages requires at

most a pointer-wide overflow

 No pool headers on free pool pages!

 Partial pointer overwrites may also be sufficient

Lookaside Pointer Overwrite (Pages)

PagedPoolSListHead

NonPagedPool

SListHead[0]

Next

Depth

NonPagedPoolSListHead[1]

NonPagedPoolSListHead[2]

Node (KNODE)

Pool page

(0x1000

bytes)

Next

P
o
o
l o

v
e
rflo

w

Page-aligned pointer to

next lookaside pool page

PagedPoolSListHead

NonPagedPool

SListHead[0]

Next

Depth

NonPagedPoolSListHead[1]

NonPagedPoolSListHead[2]

arbitrary

address

MiAllocatePoolPages

returns a page with an

address we control

arbitrary

address

PendingFrees Pointer Overwrite

 Pool chunks waiting to be freed are stored in the

pool descriptor deferred free list

 Singly-linked (similar to lookaside list)

 Overwriting a chunk’s next pointer will cause an

arbitrary address to be freed

 Inserted in the front of ListHeads[n]

 Next pointer must be NULL to end the linked list

 In freeing a user-mode address, the attacker may

control the contents of subsequent allocations

 Must be made from the same process context

PendingFrees Pointer Overwrite

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

0x140

+ N*8

Attacker controlled address is

returned in requesting memory

from ListHeads[n]

Paged Pool Descriptor

Data

Pool Header

Next

Flink

Blink

Pool Header

Flink

Blink

Put in front of

ListHeads[n] on free

arbitrary

address

P
o
o
l o

v
e
rflo

w

PendingFrees Pointer Overwrite Steps

 Free a chunk to the deferred free list

 Overwrite the chunk’s next pointer

 Or any of the deferred free list entries (32 in total)

 Trigger processing of the deferred free list

 Attacker controlled pointer freed to designated free list

 Force allocation of the controlled list entry

 Allocator returns user-mode address

 Corrupt allocated entry

 Trigger use of corrupted entry

PoolIndex Overwrite

 A pool chunk’s PoolIndex denotes an index into the

associated pool descriptor array

 For paged pools, PoolIndex always denotes an index

into the nt!ExpPagedPoolDescriptor array

 On checked builds, the index value is validated in a

compare against nt!ExpNumberOfPagedPools

 On free (retail) builds, the index is not validated

 For non-paged pools, PoolIndex denotes an index

into nt!ExpNonPagedPoolDescriptor when there

are multiple NUMA nodes

 PoolIndex is not validated on free builds

Pool Header

PoolIndex Overwrite

Pool Header
P

re
v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Chunk data Pool Header

BlockSize of the

previous chunk

Pool descriptor

array index

BlockSize of

the next chunk

Pool type

Pool overflow

Pool chunk in which

the overflow occurs Chunk that is corrupted

PoolIndex Overwrite

 A malformed PoolIndex may cause an allocated pool

chunk to be freed to a null-pointer pool descriptor

 Controllable with null page allocation

 Requires a 2 byte pool overflow

 When linking in to a controlled pool descriptor, the

attacker can write the address of the freed chunk to

an arbitrary location

 No checks performed when “linking in”

 All ListHeads entries are fully controlled

 ListHeads[n].Flink->Blink = FreedChunk

PoolIndex Overwrite

8b1ac000

8b1ad140

8b1ae280

8b1af3c0

8b1b0500

0

0

0

0

0

1

2

3

4

5

6

…

15

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Chunk data

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

Virtual Address Index

Flink

Pool Header

Blink

0x140

+ N*8

Flink

Attacker-controlled

pointers
Updated with pointer

to freed chunk

The virtual null page is

mapped to control the

contents of the «null»

paged pool descriptor

Freed pool chunk

nt!ExpPagedPoolDescriptor

NULL Paged Pool Descriptor

PoolIndex set to 5

Blink

PoolIndex Overwrite + Coalescing

 If delayed frees are not used, the PoolIndex attack

writes a kernel pool address to an arbitrary location

 ListHeads[n].Flink->Blink = FreedChunk

 We can extend this to an arbitrary write of a null-

page address by coalescing the freed (corrupted)

chunk

 E.g. free an adjacent pool chunk

 This will cause the initial freed chunk to be unlinked

from the free list and update the Blink with a pointer

back to the ListHeads entry (null-page)

PoolIndex Overwrite + Coalescing

HalDispatchTable

Blink

0x140

+ N*8

Target Address

(e.g. HalDispatchTable)

Pool Header

Flink

«Blink» points back to

kernel pool address

Null-page pool descriptor

ListHeads entry before 1st free

+0

xHalQuerySystemInformation

Corrupted Chunk

Blink

0x140

+ N*8

Corrupted pool chunk is freed

+0

Corrupted Chunk Blink

Pointer updated with null-

page address after unlink

HalDispatchTable

Blink

0x140

+ N*8

Corrupted pool chunk is

coalesced with adjacent free

+0

ListHeads Entry

PoolIndex Overwrite (Delayed Frees)

 If delayed pool frees is enabled, the same effect can

be achieved by creating a fake PendingFrees list

 First entry should point to a user crafted chunk

 The PendingFreeDepth field of the pool descriptor

should be >= 0x20 to trigger processing of the

PendingFrees list

 The free algorithm of ExDeferredFreePool does

basic validation on the crafted chunks

 Coalescing / safe unlinking

 The freed chunk should have busy bordering chunks

PoolIndex Overwrite (Delayed Frees)

0

1

2

3

4

5

…

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Data

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

Virtual

Address

Index

0x140

+ N*8

Freed chunks are put in front of the

linked list, hence the blink of the block

previously in front is updated

The virtual null page is

mapped to control the

contents of the «null»

paged pool descriptor

15

Freed pool chunk
NULL Paged Pool Descriptor

Data

Pool Header

Next

nt!ExpPagedPoolDescriptor

1st chunk to be linked

into ListHeads[n]

Flink

Blink

8b1ac000

8b1ad140

8b1ae280

8b1af3c0

8b1b0500

0

0

0

Pool Header

Flink

Blink

Pool Header

Flink

Blink

arbitrary

Put in front of ListHeads[n]

PoolIndex Overwrite (Example)

 In controlling the PendingFrees list, a user-controlled

virtual address (eax) can be written to an arbitrary

destination address (esi)

 In turn, this can be used to corrupt function pointers

used by the kernel to execute arbitrary code

eax=20000008 ebx=000001ff ecx=000001ff edx=00000538 esi=80808080 edi=00000000

eip=8293c943 esp=9c05fb20 ebp=9c05fb58 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202

nt!ExDeferredFreePool+0x2e3:

8293c943 894604 mov dword ptr [esi+4],eax ds:0023:80808084=????????

Quota Process Pointer Overwrite

 Quota charged pool allocations store a pointer to the

associated process object

 ExAllocatePoolWithQuotaTag(…)

 x86: last four bytes of pool body

 x64: last eight bytes of pool header

 Upon freeing a pool chunk, the quota is released and

the process object is dereferenced

 The object’s reference count is decremented

 Overwriting the process object pointer could allow an

attacker to free an in-use process object or corrupt

arbitrary memory

Quota Process Pointer Overwrite

Pool Header

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Process

Pointer

x64

Pool Header

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

x86
Process pointer stored in the pool header or at the end

of the pool body depending on platform architecture

PoolType & 0x8

(quota used)

Pool overflow
Pool

Header

Process

Pointer
Pool overflow

Pool

Header

Quota Process Pointer Overwrite

 Quota information is stored in a

EPROCESS_QUOTA_BLOCK structure

 Pointed to by the EPROCESS object

 Provides information on limits and how much quota is

being used

 On free, the charged quota is returned by subtracting

the size of the allocation from the quota used

 An attacker controlling the quota block pointer could

decrement the value of an arbitrary address

 More on this later!

Arbitrary Pointer Decrement

Pool Header
Process

Pointer
Pool overflow Pool Header

EPROCESS EPROCESS_QUOTA_BLOCK

Address of executive process object

controlled by the attacker

Usage counter decremented

on free, for which the address

is controlled by the attacker

Quota charged pool allocation (x86)

Summary of Attacks

 Corruption of busy pool chunk

 BlockSize <= 0x20

 PoolIndex + PoolType/BlockSize Overwrite

 Quota Process Pointer Overwrite

 BlockSize > 0x20

 PoolIndex (+PoolType) Overwrite

 Quota Process Pointer Overwrite

 Corruption of free pool chunk

 BlockSize <= 0x20

 Lookaside Pointer Overwrite

 BlockSize > 0x20

 ListEntry Flink Overwrite / PendingFrees Pointer Overwrite

Case Studies

Modern Kernel Pool Exploitation:

Attacks and Techniques

Case Study Agenda

 Two pool overflow vulnerabilities

 Both perceived as difficult to exploit

 CVE-2010-3939 (MS10-098)

 Win32k CreateDIBPalette() Pool Overflow Vulnerability

 CVE-2010-1893 (MS10-058)

 Integer Overflow in Windows Networking Vulnerability

CVE-2010-3939 (MS10-098)

 Pool overflow in win32k!CreateDIBPalette()

 Discovered by Arkon

 Function did not validate the number of color entries in

the color table used by a bitmap

 BITMAPINFOHEADER.biClrUsed

 Every fourth byte of the overflowing buffer was set to 0x4

 Can only reference 0x4xxxxxx addresses (user-mode)

 PoolType is always set to NonPaged

Pool Header

Pool Header

X X X 0x2

PoolType = NonPaged | InUse

(0x2 due to bit alignment of field on x86)

Pool overflow

CVE-2010-3939 (MS10-098)

 The attacker could coerce the pool allocator to return

a user-mode pool chunk

 ListEntry Flink Overwrite

 Lookaside Overwrite

 Requires the kernel pool to be cleaned up in order

for execution to continue safely

 Repair/remove broken linked lists

Pool Header

Pool Header Next Pointer

0x4xxxxxx Pool overflow

CVE-2010-3939 (MS10-098)

 Vulnerable buffer is also quota charged

 Can overwrite the process object pointer (x86)

 No pool chunks are corrupted (clean!)

 Tactic: Decrement the value of a kernel-mode

window object procedure pointer

 Trigger the vulnerability n-times until it points to user-

mode memory and call the procedure

Pool Header Pool Header
Process

Pointer
Pool overflow

Quota charged allocation

Locating Window Objects

 Via Window Manager (USER) Handle Table

 CsrClientConnectToServer (USERSRV_INDEX)

 Windows 7: user32!gSharedInfo

 Windows XP: user32!UserRegisterWowHandlers

 Via User-Mode Mapped Window Object

 NtUserCallOneParam(…)  win32k!_MapDesktopObject

 Patch any routine that calls user32!ValidateHwnd to return

the window object pointer (user-mode)

 E.g. IsServerSideWindow()

Handle Table From User-Mode

Kernel-Mode -> User-Mode Address

 User-space address of desktop heap objects are

computed using ulClientDelta

 NtCurrentTeb()->Win32ClientInfo->ulClientDelta

Desktop Heap

Window

User Kernel

Cursor

Desktop Heap

Window Cursor

ulClientDelta

Window Objects from User-Mode

window procedure

Kernel window

object pointer

Retrieving Window Object Pointer

Steps

 Create a default procedure window

 win32k!xxxDefWindowProc

 Locate the window object in kernel memory

 Corrupt the window procedure pointer

 SendMessage(hwnd,…)

CVE-2010-3939 (MS10-098)

 Quota Process Pointer Overwrite

 Demo

CVE-2010-1893 (MS10-058)

 Integer overflow in

tcpip!IppSortDestinationAddresses()

 Discovered by Matthieu Suiche

 Affected Windows 7/2008 R2 and Vista/2008

 Function did not use safe-int functions consistently

 Could result in an undersized buffer allocation,

subsequently leading to a pool overflow

IppSortDestinationAddresses()

 Sorts a list of IPv6 and IPv4 destination addresses

 Each address is a SOCKADDR_IN6 record

 Reachable from user-mode by calling WSAIoctl()

 Ioctl: SIO_ADDRESS_LIST_SORT

 Buffer: SOCKET_ADDRESS_LIST structure

 Allocates buffer for the address list

 iAddressCount * sizeof(SOCKADDR_IN6)

 No overflow checks in multiplication

typedef struct _SOCKET_ADDRESS_LIST {

 INT iAddressCount;

 SOCKET_ADDRESS Address[1];

} SOCKET_ADDRESS_LIST, *PSOCKET_ADDRESS_LIST;

IppFlattenAddressList()

 Copies the user provided address list to the

allocated kernel pool chunk

 An undersized buffer could result in a pool overflow

 Overflows the next pool chunk with the size of an address

structure (0x1c bytes)

 Stops copying records if the size != 0x1c or the

protocol family != AF_INET6 (0x17)

 Possible to avoid trashing the kernel pool completely

 The protocol check is done after the memcpy()

 We can overflow using any combination of bytes

Pool Overflow

Pool

Header

Address

Record
Chunk data

Address

Record

Address

Record
Pool overflow

Pool

Header

Blocksize padding

Pool chunk in which

the overflow occurs

Corrupted memory

(0x1c bytes minimum)

SOCKADDR_IN6

structure (0x1c bytes)

Exploitation Tactics

 Can use the PoolIndex attack to extend the pool

overflow to an arbitrary memory write

 Must overwrite a busy chunk

 Overwritten chunk must be freed to ListHeads lists

 BlockSize > 0x20

 Or… fill the lookaside list

 To overflow the desired pool chunk, we must

defragment and manipulate the kernel pool

 Allocate chunks of the same size

 Create “holes” by freeing every other chunk

Filling the Kernel Pool

 What do we use to fill the pool ?

 Depends on the pool type

 Should be easy to allocate and free

 NonPaged Pool

 NT objects (low overhead)

 Paged Pool

 Unicode strings (e.g. object properties)

 Session Paged Pool

 Window Manager (USER) and GDI objects

Kernel Objects in Pool Manipulation

 Trivial to obtain the kernel pointers for executive,

window manager, and GDI objects

 Allows precise control in manipulating kernel pools

 Window Manager (USER) Objects

 CsrClientConnectToServer(USERSRV_INDEX)

 Windows 7: user32!gSharedInfo

 GDI Objects

 Peb()->GdiSharedHandleTable

 NT Objects

 NtQuerySystemInformation(SystemHandleInfo…)

Filling the Kernel Pool (NT Objects)

NT Object

#1

NT Object

#2

NT Object

#3

NT Object

#4

NT Object

#5

NT Object

#6

NonPaged pool page

NT Object

#7

NT Object

#8

First pool page

allocation (offset 0)

Second page allocation

Offset: PAGE_SIZE – size

NtCreateIoCompletion

Handle

NtQuerySystemInformation

(SystemHandleInformation)

Handle table entry info

Object address

User Kernel

Enumerating Object Addresses

 For NT objects, we use NtQuerySystemInformation

to enumerate the objects’ kernel addresses

 SystemHandleInformation

 Before creating any holes (using NtClose), we

ensure that we control the surrounding chunks

 Avoid coalescing or corruption of uncontrolled chunks

Other

chunk

NT Object

#6

NT Object

#5

NT Object

#4

NT Object

#7

Chunk to be freed

Kernel Pool Manipulation

 If delayed frees are used (most systems), we can create

holes for every second allocation

 The vulnerable buffer is later allocated in one of these holes

 Freeing the remaining allocations after triggering the

vulnerability mounts the PoolIndex attack

kd> !pool @eax

 Pool page 976e34c8 region is Nonpaged pool

 976e32e0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

 976e3340 size: 60 previous size: 60 (Free) IoCo

 976e33a0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

 976e3400 size: 60 previous size: 60 (Free) IoCo

 976e3460 size: 60 previous size: 60 (Allocated) IoCo (Protected)

*976e34c0 size: 60 previous size: 60 (Allocated) *Ipas

 Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys

 976e3520 size: 60 previous size: 60 (Allocated) IoCo (Protected)

 976e3580 size: 60 previous size: 60 (Free) IoCo

 976e35e0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

 976e3640 size: 60 previous size: 60 (Free) IoCo

Coalescing for Fun and Profit

 If delayed frees are not used, we end up writing a

kernel pointer to an arbitrary location

 The address of the corrupted pool chunk

 We use the coalescing trick to write a pointer back to

our null-page descriptor instead

 Trigger an unlink of the chunk that was linked into our

crafted pool descriptor

 Requires three sequentially allocated objects

 One for our vulnerable buffer to fall into (after free)

 One that will be corrupted

 One that will be merged with the corrupted chunk

Coalescing for Fun and Profit

Vulnerable

buffer

NT Object

#5

NT Object

#4

NT Object

#7

Buffer allocated

and triggers

overflow

Free

(lookaside)

Corrupted

Object

NT Object

#4

NT Object

#7

Free

(lookaside)

Free

(ListHeads)

NT Object

#4

NT Object

#7

Free

(lookaside)

Free (unlink

+ merge)

NT Object

#7

Before freeing, make sure the

lookaside is full. We want this

chunk to end up in the

ListHeads.

Address of corrupted

chunk is put in null-page

pool descriptor

Corrupted chunk is unlinked and merged.

Address of ListHeads entry in null-page

pool descriptor is written to attacker-

chosen address.

Put on lookaside as it

was recently allocated

Overflow into

adjacent chunk

Step1 Step2 Step 3 Step 4

Addressing Multi-Core Systems

 On multi-core systems, multiple cores/threads can

be operating on the same pool

 E.g. only one non-paged pool

 We can reduce operations on free lists by populating

the lookasides of each logical processor

 SetProcessAffinityMask() / SetThreadAffinityMask()

 Lookasides are periodically sized according to their

activity by the balance set manager

 Determined by allocate/free hits and misses

 Increasing the size can reduce the chance of other

threads interfering with the pool manipulation

Populating Lookaside Lists

KPCR #2

KPCR #1

KPCR #3

KPCR #4

Process

(Thread)

Call SetProcessAffinity(n) and

force allocations/frees to populate

lookaside lists

NonPaged Pool

Lookasides Lookasides Lookasides Lookasides

Logical processors

defining non-paged

lookaside lists

#ProTip: Set affinity mask to a

processor/lookaside with less

activity!

Lookaside List Information

 Can be obtained via NtQuerySystemInformation() using
SystemLookasideInformation

 Returns information on all the lookaside lists

 Can be used to measure lookaside list activity

 Each entry is represented as a
SYSTEM_LOOKASIDE_INFORMATION structure

 Ordered by (logical) processor

typedef struct _SYSTEM_LOOKASIDE_INFORMATION

{

 USHORT CurrentDepth;

 USHORT MaximumDepth;

 ULONG TotalAllocates;

 ULONG AllocateMisses;

 ULONG TotalFrees;

 ULONG FreeMisses;

 ULONG Type;

 ULONG Tag;

 ULONG Size;

} SYSTEM_LOOKASIDE_INFORMATION, *PSYSTEM_LOOKASIDE_INFORMATION;

Possible Reliability Issues (1)

 1. Corrupted chunk is freed to a lookaside, thus

breaking the PoolIndex attack

 Even if we fill the lookaside, there may still be preempted

threads that allocate from it

 Can be addressed by maximizing the depth of the

list while waiting for the balance set manager to

reduce its limit

 The lookaside list will have more entries than it can hold

 Lookasides could also be avoided altogether by using a

larger block size

Possible Reliability Issues (2)

 2. Buffer we overflow from uses a pool chunk not

freed by us

 Could happen if unanticipated frees were made to the

lookaside list while filling

 Less likely to happen on multi-core systems as we have

multiple lookaside lists for each block size

 Exploit reliability may improve with additional cores!

Possible Reliability Issues (3)

 3. Buffer we overflow from (after free) is reallocated

by a different process and coalesced with the

corrupted chunk

 Triggers an unlink referencing the null-page (not mapped)

 Can be addressed by overflowing from the end of a

page into a new page

 Requires two sequentially allocated objects on the

beginning of the next page

Page Boundary Pool Allocation

 We can improve reliability by only creating holes at

the end of a pool page

kd> !pool @eax

Pool page 8b518fc8 region is Nonpaged pool

 8b518000 size: 40 previous size: 0 (Allocated) Even (Protected)

 8b518040 size: 40 previous size: 40 (Allocated) Even (Protected)

 …

 8b518f00 size: 40 previous size: 40 (Allocated) Even (Protected)

 8b518f40 size: 40 previous size: 40 (Allocated) Even (Protected)

 8b518f80 size: 40 previous size: 40 (Allocated) Even (Protected)

*8b518fc0 size: 40 previous size: 40 (Allocated) *Ipas

 Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys

 8b519000 size: 40 previous size: 0 (Allocated) Even (Protected)

 8b519040 size: 40 previous size: 40 (Allocated) Even (Protected)

 8b519080 size: 40 previous size: 40 (Allocated) Even (Protected)

 8b5190c0 size: 40 previous size: 40 (Allocated) Even (Protected)

Next page Does not merge with

the previous chunk

Page Boundary Pool Overflow

Vulnerable

buffer NT Object NT Object NT Object ...

...

...

...

NT Object

...

... ...

... ...

First allocated

object in page.

Last allocated

object in page!
... ...

... ...

Vulnerable buffer

allocated on page

boundary

Pool Corruption Details

Vulnerable buffer Object Data
Pool

Header
Quota

Header

Object

Header

+0x000 PreviousSize : 0y000000000 (0)

+0x000 PoolIndex : 0y0000101 (0x5)

+0x002 BlockSize : 0y000001000 (0x8)

+0x002 PoolType : 0y0000011 (0x3)

+0x000 Ulong1 : 0x6080a00

+0x004 PoolTag : 0xef436f49

+0x004 AllocatorBackTraceIndex : 0x6f49

+0x006 PoolTagHash : 0xef43

+0x000 PagedPoolCharge : 0

+0x004 NonPagedPoolCharge : 0x40

+0x008 SecurityDescriptorCharge : 0

+0x00c SecurityDescriptorQuotaBlock : (null)

+0x000 PointerCount : 0n1

…

Event object

41410017 41414141 41414141 41414141

41414141 41414141 41414141 41410017

41414141 41414141 41414141 41414141

41414141 41414141

CVE-2010-1893 (MS10-058)

 Kernel pool manipulation + PoolIndex overwrite

 Demo

Kernel Pool Hardening

Modern Kernel Pool Exploitation:

Attacks and Techniques

ListEntry Flink Overwrites

 Can be addressed by properly validating the flink

and blink of the chunk being unlinked

 Yep, that’s it...

Lookaside Pointer Overwrites

 Lookaside lists are inherently insecure

 Unchecked embedded pointers

 All pool chunks must reserve space for at least the

size of a LIST_ENTRY structure

 Two pointers (flink and blink)

 Chunks on lookaside lists only store a single pointer

 Could include a cookie for protecting against pool

overflows

 Cookies could also be used by PendingFrees list

entries

Lookaside Pool Chunk Cookie

Header
PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

Per-Processor Non-

Paged Lookaside Lists

Cookie

Next

P
o
o
l o

v
e
rflo

w

Header

Cookie

Next

ExAllocatePoolWithTag verifies

Cookie before returning the chunk

PoolIndex Overwrites

 Can be addressed by validating the PoolIndex value

before freeing a pool chunk

 E.g. is PoolIndex > nt!ExpNumberOfPagedPools ?

 Also required the NULL-page to be mapped

 Could deny mapping of this address in non-privileged

processes

 Would probably break some applications (e.g. 16-bit

WOW support)

Quota Process Pointer Overwrites

 Can be addressed by encoding or obfuscating the

process pointer

 E.g. XOR’ed with a constant unknown to the attacker

 Ideally, no pointers should be embedded in pool

chunks

 Pointers to structures that are written to can easily be

leveraged to corrupt arbitrary memory

Conclusion

Modern Kernel Pool Exploitation:

Attacks and Techniques

Future Work

 Pool content corruption

 Object function pointers

 Data structures

 Remote kernel pool exploitation

 Very situation based

 Kernel pool manipulation is hard

 Attacks that rely on null page mapping are infeasible

 Kernel pool manipulation

 Becomes more important as generic vectors are

addressed

Conclusion

 The kernel pool was designed to be fast

 E.g. no pool header obfuscation

 In spite of safe unlinking, there is still a big window of

opportunity in attacking pool metadata

 Kernel pool manipulation is the key to success

 Attacks can be addressed by adding simple checks

or adopting exploit prevention features from the

userland heap

 Header integrity checks

 Pointer encoding

 Cookies

References

 SoBeIt[2005] – SoBeIt
How to exploit Windows kernel memory pool,
X’con 2005

 Kortchinsky[2008] – Kostya Kortchinsky
Real-World Kernel Pool Exploitation,
SyScan 2008 Hong Kong

 Mxatone[2008] – mxatone
Analyzing Local Privilege Escalations in win32k,
Uninformed Journal, vol. 10 article 2

 Beck[2009] – Peter Beck
Safe Unlinking in the Kernel Pool,
Microsoft Security Research & Defense (blog)

MS11-034

Modern Kernel Pool Exploitation:

Attacks and Techniques

Overview

 All the vulnerabilities addressed by this bulletin were
related to user-mode callbacks
 Locking issues

 Null pointer dereferences

 Invoking user-mode callbacks
 Event hooks (SetWinEventHook)

 Window hooks (SetWindowsHook)

 Some functions call back into user-mode regardless of
hooks

 Pointer to callback function table stored in the PEB
 Peb()->KernelCallbackTable

 Hook this to do whatever during callbacks

NTOSKRNL

USER32

NTDLL

nt!KeUserModeCallback

user

kernel

KeUserModeCallback

KiUserCallbackDispatcher

KernelCallbackTable

NtCallbackReturn

Switch to kernel

callback stack

__ClientLoadLibrary

__ClientLoadMenu

__ClientEventCallback

NtCallbackReturn

Set TRAP_FRAME EIP to

KiUserCallbackDispatcher
Restore original

TRAP_FRAME EIP

Restore original

kernel stack

CallbackFunction
User application

Hook for fun and profit

Use After Free Vulnerabilities

 All Window Manager (USER) objects are preceded

by a HEAD structure

 Defines handle value and lock count

 Whenever a callback occurs, objects subsequently

used has to be locked

 E.g. if a window is insufficiently locked, a user could call

DestroyWindow to free it

 Similarly, any buffer that can be reallocated or freed

(e.g. an array used by an object) has to be checked

upon callback return

 E.g. menu items array

Ex #1: Window Object Use-After-Free

 Microsoft previously patched two vulnerabilities in

win32k!xxxCreateWindowEx

 Window Creation Vulnerability (MS10-032)

 Function Callback Vulnerability (MS10-048)

 Both issues dealt with improper validation of

changes occurring during callbacks

 None of the patches ensured that the window object

returned by the CBT hook was properly locked

 Hence, an attacker could destroy the window object

(in a subsequent callback) and coerce the kernel into

operating on freed memory

Ex #2: Cursor Object Use-After-Free

 In using a drag cursor while dragging an object,

win32k!xxxDragObject did not lock the original

cursor

 An attacker could destroy the original cursor in a

user-mode callback such as an event hook

 Consequently, the kernel would operate on freed

memory upon restoring the original cursor

Exploitability

 In most cases, the attacker can allocate and control
the bytes that are freed
 E.g. using APIs that allocate strings

 Embedded object pointers in the freed object may
allow an attacker to increment (lock) or decrement
(unlock) an arbitrary address

 Common behavior of locking routines

 Some targets
 KTHREAD.PreviousMode

 kernel trusts argument pointers when PreviousMode == 0

 HANDLEENTRY.bType

 destroy routine for free type (0) is null (mappable by user)

Questions ?

 Email: kernelpool@gmail.com

 Blog: http://mista.nu/blog

 Slides/Paper: http://mista.nu/research

 Twitter: @kernelpool

mailto:kernelpool@gmail.com
http://mista.nu/blog
http://mista.nu/research

