
 1

 Attacking the WebKit Heap
[Or how to write Safari exploits]

Agustin Gianni + Sean Heelan
Immunity Inc.

 2

Introduction

● The use of Webkit has been increasing steadily
● According to Wikipedia¹, “WebKit powers Google Chrome and Apple's Safari, which in

January 2011 had around 13% and 6% of browser market share respectively.”

● Webkit Heap is based on TCMalloc
● Source is available

● A custom heap allocator eases the
development of cross platform exploits.
● They use the same one for every architecture/os
● A single exploit to rule them all.

¹ http://en.wikipedia.org/wiki/WebKit

 3

Motivation

● Huge surface of attack
● Chrome
● Safari
● Android
● Kindle
● BlackBerry

● Security teletubbies use
MacOSX
● Finally we can pwn Charlie Miller.

 4

Basics

● Custom allocator designed with speed in mind
● Generally, speed = less “security checks”

● Thread oriented design
● Each thread gets a thread-local cache.
● Each thread manages its own allocations.

● TCMalloc consists of three different allocators
● Hierarchically arranged

– Higher up allocators serve the lower
allocators with memory

 5

Allocator Hierarchy

The PageHeap is closest to the system (highest), the ThreadCache is closest to
the application (lowest)

 6

Allocation Sizes

● Chunk sizes are divided into kNumClasses

● WebKit has 68 Size Classes
● Allocations are rounded to the nearest size class

● Small chunks < 8 * PAGE_SIZE

● Allocated from the ThreadCache
● Large chunks > 8 * PAGE_SIZE

● Allocated from the PageHeap

 7

Spans
● Memory managed by TCMalloc is backed

by a Span structure

● Sets of contiguous pages

● Can contain:

● Set of Small Chunks
● Large Chunk

● Span metadata is stored in the Span
header which is allocated independently of
the Span data

 8

ThreadCache

● Front-end allocator for each
thread

● Contains an array of 68* free-
lists

● Max. elements per free-list is
256*

● Allocates/Deallocates its
memory from/to the
CentralCache

* May differ between applications

 9

ThreadCache Freelist

● Each size class has its own
ThreadCache FreeList

● The list_ attribute points to a
singly linked list of free
chunks

 10

Central-Cache

● Is an array of CentralFreeList's

● One per size class

● Obtains/Frees its memory from/to the
PageHeap

● Splits a Span into smaller chunks

● Provides chunks to Thread-Caches

● Populates a given freelist

● Shared by all threads

● Locking is required

 11

Small Chunk Span Creation

● The Span objects list is used as the backend
for FreeList creation for the CentralCache

 12

PageHeap

● Manages chunks of memory allocated from the
system allocators

● Populated on the first call to PageHeap::New
(and as required after this)
● This will trigger an allocation from the System

allocator e.g. VirtualAlloc, mmap, sbrk

● Contains two free lists
● SpanList large

– For chunks bigger than kMaxPages (256 in WebKit)
● SpanList free_[kMaxPages]

– First entry is 1 page, second entry 2 pages, and so on

 13

Small Chunk
Allocation

 14

Small Chunk Allocation

● 68 different Size Classes *

● Sizes are rounded to the next size class

● 8 bytes is the minimum chunk size
● Allocations of size 0 are valid and rounded up to 8

● Chunks will be obtained from one of the Thread-Cache
free lists

 15

 16

Large Chunk
Allocation

 17

Large Chunk Allocation

● Handled by the PageHeap
● Allocations of more than 8*PAGE_SIZE are

considered large allocations
● Page aligned
● Can trigger heap growth

 18

 19

Chunk Deallocation

● Small chunks go directly to the ThreadCache free list.

● If the free list size exceeds 'kMaxFreeListLength'
(256) some of the chunks are moved to the central-
cache free list.

● If the combined size of the chunks exceeds
'kMaxThreadCacheSize' (2<<20) → GC

● Large chunks are inserted on the PageHeap

● Coalescing is triggered if neighboring chunks are
also free.

Object Deallocation Flow Graph!

 21

End of Introduction

 22

Exploiting Memory Corruption
Bugs in TCMalloc

 23

Security Mechanisms

● Back to 1995
● All in all, there are no

protections
● Lulz level increased

comex: “The best way to avoid
fighting with the heap is to find
vulnerabilities that aren't heap
overflows”

● Vendors must have
felt sorry for us =D

 24

Resurrecting the Dead

● Freeing Invalid Pointers
● ThreadCache FreeList Overflow

● Insert to FreeList[X]

● Span Objects List Overflow
● Insert to Span Objects list

● Double Free
● Span Metadata Overflow

● Unlink

● Strawberry Pudding

Freeing Invalid Pointers

Freeing Invalid Pointers:
The Bad
● If the pointer has a PageID (ptr >> kPageShift)

that has not previously recorded as a Span then
Bad Things may occur
● There is a PageMap object that maps from pointers

to the correct Span containing information about the
page they are within

● At the start of do_free TCMalloc attempts to
retrieve the Span for the pointer using
GetDescriptor(ptr >> kPageShift)

Freeing Invalid Pointers:
The Bad

void* get(Number k) const {

 ASSERT(k >> BITS == 0);

 const Number i1 = k >> LEAF_BITS;

 const Number i2 = k & (LEAF_LENGTH-1);

 return root_[i1]->values[i2];

 }

● root is an array of 32 pointers, initialized to 0

● values is an array of 32768 pointers, initialized to 0

● So ptr >> kPageShift must therefore have been
inserted into the PageMap at some point or ...

Freeing Invalid Pointers:
The Bad
● Bad Things

● TCMalloc in WebKit will segfault on the NULL ptr
dereference if root[i1] has not been alloc'd

● TCMalloc in Chrome detects the above condition
and returns NULL

● In both, the values array is initialized to 0 so
root_[i1]->values[i2] will return NULL if it has
never been set previously

● Chrome again detects the NULL return value and
will raise a SIGABRT or similar

● WebKit again will kamikaze on a NULL ptr soon
after

Freeing Invalid Pointers:
The Bad
● Can be an inconvenience for other techniques

● Prevents us from free'ing Span header objects as
they are allocated from a separate pool of memory

● We have to be careful not to trigger free calls on
pointers we insert into free lists after they are
handed to the application if they are not in a valid
Span

● As a side note, the above two level array is
used for 32-bit Linux/OS X, 32-bit Windows
uses a flat array and 64-bit * uses a radix tree
● For our purposes the result is effectively the same

Freeing Invalid Pointers:
The Good
● We can however free any pointer that maps

back to a valid Span
● Free'ing large objects (> kMaxSize [32768])

– Free of any address within the first page of the object
free's the object

– The other pages are not linked to any Span
● Free'ing small objects

– Any address that falls within a span recorded as
containing small objects can be free'd

– If the Span contains multiple pages, each page is linked
back to the correct Span header in the PageMap

– The pointer will be added to the free list for size class of
the Span it falls within

Freeing Invalid Pointers:
Large Objects

PageMap

0xbc31 SPAN_0xbc31

Freeing Invalid Pointers:
Large Objects

PageMap

0xbc31 SPAN_0xbc31

free(0xbc31ffff) :)

free(0xbc32000) :(

Freeing Invalid Pointers:
Small Objects

PageMap

0xbc31 SPAN_0xbc31

0xbc32 SPAN_0xbc31

Freeing Invalid Pointers:
Small Objects

PageMap

0xbc31 SPAN_0xbc31

0xbc32 SPAN_0xbc31

Summary

● For large objects free'ing any pointer within the
first page free's the entire object

● For small objects free'ing any pointer within the
Span free's that pointer
● This pointer does *NOT* have to be correctly

aligned with the small chunks in that Span
● Therefore we can free part of an in-use chunk if we

want

● Interesting vector when considering partial
pointer overflows that are later free'd

● Free'ing anything else will end in Bad Things

 36

ThreadCache FreeList
Corruption

 37

FreeList[X] Allocation

● ThreadCache FreeList[X]

● ThreadCache::Allocate (non empty freelist)

SLL_Pop(void **list_)
result = *list_;

*list_ = **list_;

return result;

 38

FreeList[X] Allocation

SLL_Pop(void **list_)
result = *list_;

 39

FreeList[X] Allocation

SLL_Pop(void **list_)
result = *list_;

 40

FreeList[X] Allocation

SLL_Pop(void **list_)
result = *list_;

●

*list_ = **list_;
return result;

 41

Insert to FreeList[X]

 42

Insert to FreeList[X]

overflow_func(result)

 43

Insert to FreeList[X]

 44

Insert to FreeList[X]

Allocate(FreeList[X])

 45

Insert to FreeList[X]

Allocate(FreeList[X])

● This allocation returns an address we control to
the application as valid heap memory
● Similar to the Insert to Lookaside technique in effect

● The new list head pointer is equal to the first DWORD of
this region

● Caveat: Ensuring our overflow chunk is behind a chunk
in a free list may require some trickery...

 46

FreeList Creation

● Initial FreeList creation
FetchFromCentralCache

-> CentralFreeList::RemoveRange

-> CentralFreeList::FetchFromSpansSafe

->CentralFreeList::Populate
● FetchFromSpans returns the chunks in address

order but RemoveRange creates its list by
prepending the chunks to the head

● The result – Chunks in a new FreeList are
behind a newly allocated chunk

 47

FreeList Creation: Populate()

● Populate (re)sets the objects list of a span into
address order

 48

FreeList Creation:
RemoveRange()

while (count < num) {

void *t = FetchFromSpans();

if (!t) break;

SLL_Push(&head, t);

count++;

}

 49

FreeList Creation:
RemoveRange()

while (count < num) {

void *t = FetchFromSpans();

if (!t) break;

SLL_Push(&head, t);

count++;

}

● FetchFromSpans pops from the head of the
objects list and SLL_Push sets each as the
new free list head

 50

FreeList Creation

● Chunks are in reverse
address order

● Created from the
Span starting at
0xdcaa000

 51

Crafting the FreeList Layout

● Solution.
● Empty the FreeList and the first Span in the

nonempty list
– The next allocation will retrieve an ordered set of chunks

via Populate etc. from one or more spans and create a
FreeList.

– Maximum FreeList lengths differ between browsers
● Safari – 256
● Chrome – 8192

● Rearrange the FreeList via malloc/free calls

 52

FreeList Corruption Notes

● ThreadCache::Allocate
● Gives the Insert to FreeList[X] technique – revives

the 4-to-N byte overflow primitive
● Requires an overflow and at least two allocations

– The first allocation to set the list head pointer from our
corrupted chunk and the second to hand back this pointer
to the application

● On allocation of the target pointer the [D|Q]WORD
at this address becomes the FreeList head.
– Need to be wary of further allocations if we cannot set

this to 0x0 (End of List) or ensure that the allocation that
returns the target pointer is the last pointer in the free list
(length_ == 0 afterwards)

 53

FreeList Corruption Notes

● ThreadCache::Deallocate
● Generally functions correctly as chunks are

prepended to the FreeList without walking it
● May trigger a call to ReleaseToCentralCache if

FreeList[X]->length() > kMaxFreeListLength
– This in turn causes the FreeList to be walked through

PopRange. If our corrupted chunk is within batch_size
elements from the head of the list the corrupted next
pointer will be followed as will the DWORD at that
address and so on up to batch_size times.

● If the memory we inserted into the FreeList is not
within a page allocated by TCMalloc and gets free'd
then Very Bad ThingsTM happen (Process death)

 54

Span Objects List
Corruption

 55

Span Objects List Corruption

● Hang on a sec...

● What about the span objects list?
● Also a singly linked list
● The head resides directly after the FreeList

head when a new Span is created and
partially returned as a FreeList

 56

Span Objects List Corruption

● What if we force this situation as before (empty
free lists, trigger call to Populate() to reset Span
object list) and overflow the first chunk returned
instead of re-ordering for a FreeList overwrite

 57

Span Objects List Corruption

result = malloc(size)

 58

Span Objects List Corruption

result = malloc(size)

overflow(result)

 59

Faking a FreeList

● At this point the old FreeList is untouched
● But... we have trashed the next pointer for the

first chunk in the span objects list,
● The next time TCMalloc tries to build a new

FreeList from this Span it will add the pointer
we control to the list

 60

Faking a FreeList

result = FetchFromSpans();

free_list.push(result)

 61

Faking a FreeList

result = FetchFromSpans();

free_list.push(result)

result = FetchFromSpans();

free_list.push(result)

 62

Faking a FreeList

 63

Faking a FreeList

● What happens next depends on the first [Q|D]word of
the chunk at XXXX
● RemoveRange() will continue to use this Span to build

the new free list until it reaches its limit or empties the
Span

● Ideally we want it to be 0x0 so the Span is considered
empty

● If not then this pointer will be followed and so on until a
0x0 is reached or enough chunks are retrieved

 64

Summary

● Overflow the head of a new free list (or any chunk before a
chunk in a Span object list) and corrupt the next pointer of
a chunk in a Span object list

● Empty the FreeList for that Span object size

● Trigger another allocation of this size, causing TCMalloc to
create a new free list from the non-empty spans

● This allocation will follow our controlled pointer (presuming
no other spans have been added to the nonempty span
list) when building the free list

● The last chunk added is directly returned to the application

● Revives the 4-to-N byte overflow primitive, again

 65

Double Free

 66

Double Free

● TCMalloc has no protection against this type of
error
● A double free of a pointer simply results in the same

chunk being inserted into the FreeList twice

● A cycle in the FreeList is created if the chunk
was not removed from the FreeList between
frees (via allocation or returning to the
CentralFreeList)

● Exploitation - obvious?
● Allocate twice. First as an object containing function

pointers then as a controllable object e.g. a string

 67

Span Metadata Corruption:
Hacking like it's 1995

 68

Hello Darkness my old friend

static inline void DLL_Remove(Span* span) {

 span->prev->next = span->next;

 span->next->prev = span->prev;

 span->prev = NULL;

 span->next = NULL;

 }

 69

Overflowing Span Metadata

● New spans created for large allocations
(>0x8000) and when the CentralFreeList runs
out of chunks for smaller sizes

● Metadata for Spans is *not* stored inline with
the pages representing the data

● Span headers are separate objects allocated
from their own PageHeapAllocator (initially a
0x8000 byte pool created via sbrk, mmap or
VirtualAlloc)

 70

Overflowing Span Metadata

● Overflowing Span metadata is not as
convenient or as common as a FreeList or
Span object list overwrite

● Requires the Span pool to be after whatever
chunk we overflow with no unmapped pages in
between
● May not be possible to ensure this and will depend

on the OS and application embedding TCMalloc

● If we can force the required memory layout then
this may allow for as many mirrored write-4s as
we can overflow consecutive headers

 71

Required Memory Layout

● Where is the pool of Span headers
● If sbrk() is in use then we can force it to be after

the chunks managed by TCMalloc
● If mmap or VirtualAlloc are used then it could be

in any number of locations due to randomization

 72

Corrupting Span Metadata

● Presuming we have the correct memory layout,
then what?
● We need an overflow large enough to cover the

gap between our allocated chunk and the Span
metadata

 73

Corrupting Span Metadata

 74

Triggering the Unlink

● DLL_Remove is called in a number of places as
part of Span management in the PageHeap and
CentralFreeList

● The most straightforward path to DLL_Remove
appears to be through do_free on a chunk
larger than kMaxSize
● This retrieves the Span header and directly

calls pageheap->Delete(span)
● This in turn can lead to a call of

DLL_Remove on headers located before and
after the header 'span'

 75

Strawberry Pudding

<sinan> That's crap. I can make a strawberry
pudding with so many prerequisites
(In reference to some Windows heap technique)

 76

Strawberry Pudding

● There are countless ways to get interesting
'things' to happen in TCMalloc depending on
what you can corrupt

● The Span metadata unlink is approaching
'strawberry pudding' territory

● Many other fun primitives can be found within
the heap managment routines e.g. consider the
refcount attribute of a Span in the context of a
double free or corrupted FreeList

● Entirely unnecessary though =D No integrity
checks, we can win trivially.

 77

WebKit Heap Manipulation

 78

Tools of the trade

● Immunity Debugger + GDB

● Immunity Debugger

● GDB (OS X + Android)

● Allows us to dump
information about the state
of the heap

– Chunk size, etc.
● vmmap

● Accurate view of the state of
a processes memory

 79

Heap Primitives

● We need three simple things
● To allocate memory
● To free memory
● To control the contents of allocated chunks

● Bonus
● Predict the heap layout

 80

Current Techniques

● Array Allocation
● No deterministic chunk free

– It relies on the behavior of the garbage collector
● Control just the first [Q|D]WORD

– We are screwed if our function pointer is offset+8
● In newer releases of WebKit the array creation is

deferred until the elements are assigned.
– We need to force a reallocation by assigning each one of

the elements of the array.
● Summing up, it is inconvenient

 81

Current Techniques

● Plain String allocation
● Rendered useless because of Ropes

– Ropes are a non linear representation of strings
– A string is represented by a tree of arrays of characters
– Each one of the nodes can be reused by others strings

● Doing a substring on a string does not copy anything, just adds a
new reference to the node/nodes

– We need to find a way to build “linearized” strings
● More on this later

 82

Array Technique

● Control of the first [Q|D]word

● To allocate N bytes ...
● S = [Q|D]WORD_SIZE

● E = # of array elements

● C = Constant

● N = S * E + C

● E = (N – C) / S

● We need an array of “E”
elements

● Example allocation

● Green: Controlled DWORD

● Yellow: Partially controlled
DWORD

 83

Array Spray Example

● Allocate 'n' chunks

● Size 5*4 + 20

● First DWORD is 0xcafecafe

● Second DWORD is 0x00000003

 84

Allocation Primitive

● Since there is no direct fastMalloc available
● We need to get creative

● First approach:
● Just build strings!
● The catch: ropes

● Second approach:
● Take a look at the source code
● Realize what 'unescape' does

 85

Unescape
● Unescape takes an encoded

string and decodes it.

● To do so it needs the string in
linear form (ie. No ropes)

● Appends each decoded char to
a StringBuilder

● StringBuilder needs memory to
hold the “unescaped” string.

● Potentially this gives us control
over

● The size of the allocation

● The contents of the created
chunks

 86

String Builder

● Uses a reference counted storage

● Manages memory allocation
automatically

● 'unescape' will append the unescaped
characters to the a StringBuilder

● If more memory is needed,
appendUninitialized will allocate a new
buffer

● Size of the new allocation:

● new_size = prev_size + (prev_size >> 2) + 1

● The previous buffer will be freed if
its reference count reaches zero.

● This will be always the case when using
unescape

 87

Heap Spray

● String size is divided by two to
take into account that each
character is two bytes

● This will create 50 chunks of
size 0x2c0

 88

Heap Spray

● Chunks are contiguous (ie. No
metadata inbetween)

● Hence aligned to the object
size

● The whole contents of the objects
are controlled

● Allows to craft really complex
objects

 89

Heap Spray

 90

Deallocation Primitive

● There is no direct 'fastFree' available
● Traditional approach:

● Loop until GC kicks in
● This is not reliable

● Our approach
● Abuse the behavior of the StringBuilder

 91

Deallocation Primitive

● Unescape appends decoded chars to the StringBuilder

● This will trigger a new allocation
● new_size = prev_size + (prev_size >> 2) + 1

– std::vector like allocation behavior
● The previous string will be immediately freed

● Unescape a string bigger than the one we need to free

● This will generate some heap noise

● Must be taken into account
● Most of the times it does not harm

 92

Allocation Trace

● We want to make a hole of
size 0x79a

● The corresponding allocation
size is 0x820

 93

Conclusions

● A simple heap leaves us
with lots opportunities to
exploit vulnerabilities

● Heap layout modification
is easy again by using
the “unescape”
technique.

● No heap protections
makes our life easy.

 94

● Mark Daniel
● Jake Honoroff
● Charlie Miller
● Skypher

Previous Work

 95

References

● http://goog-perftools.sourceforge.net/doc/tcmalloc.html

● https://trac.webkit.org/wiki/FastMalloc%20Glossary

● http://securityevaluators.com/files/papers/isewoot08.pdf

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://trac.webkit.org/wiki/FastMalloc%20Glossary
http://securityevaluators.com/files/papers/isewoot08.pdf

 96

Questions?

Sean Heelan
sean@immunityinc.com
@seanhn

The end

Agustin Gianni
agustin@immunityinc.com

@agustingianni

THX

mailto:sean@immunityinc.com
mailto:agustin@immunityinc.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

