Agus v' + Sean n
" Immunity Inc.

N

Introduction

 The use of Webkit has been increasing steadily

» According to Wikipedia?, “WebKit powers Google Chrome and Apple's Safari, which in
January 2011 had around 13% and 6% of browser market share respectively.”

» Webkit Heap is based on TCMalloc
e Source Is avallable

* A custom heap allocator eases the
development of cross platform exploits.

 They use the same one for every architecture/os
* A single exploit to rule them all.

2
1 http://en.wikipedia.org/wiki/WebKit

Motivation

 Huge surface of attack

« Chrome

e Safari
 Android

e Kindle
BlackBerry

* Security teletubbies use
MacOSX

* Finally we can pwn Charlie Miller

N

Basics

* Custom allocator designed with speed in mind
* Generally, speed = less “security checks”
 Thread oriented design
 Each thread gets a thread-local cache.
 Each thread manages its own allocations.
 TCMalloc consists of three different allocators

* Hierarchically arranged

- Higher up allocators serve the lower
allocators with memory

Allocator Hierarchy

Fage Heap

| o

Thread Cache o Thread Cache 1 Thread Cache 2 Thread Cache N

The PageHeap is closest to the system (highest), the ThreadCache is closest to
the application (lowest)

Allocation Sizes

Chunk sizes are divided into kNumClasses

e WebKit has 68 Size Classes
 Allocations are rounded to the nearest size class

 Small chunks <8 * PAGE_SIZE

e Allocated from the ThreadCache
e Large chunks > 8 * PAGE_SIZE

 Allocated from the PageHeap

Spans

 Memory managed by TCMalloc is backed
by a Span structure

e Sets of contiguous pages

« Can contain: >pan

PagelD start
o Set of Small Chunks length

e Large Chunk Span “next

_ _ Span *prev

e Span metadata is stored in the Span ref count

header which is allocated independently of size class
the Span data is_free
objects

ThreadCache

 Front-end allocator for each

thread
e Contains an array of 68* free-
lists ThreadCache
]] size
* Max. elements per free-list is tid ThreadCache FreeList
256* list [kNum(Classes] - list
) length
* Allocates/Deallocates its ,
prev_ owater_
memory from/to the ot
CentralCache

* May differ between applications

ThreadCache Freelist

e Each size class has its own |
. Class Size 1
ThreadCache FreeList = o o S

e The list_ attribute points to a length_
. i . lowater
singly linked list of free

ChunkS ass Size 2

list_ | s
length_
lowater

Class Size M

ist_ e B
length_
lowater

Central-Cache

Is an array of CentralFreelList's

* One per size class

Obtains/Frees its memory from/to the
PageHeap

e Splits a Span into smaller chunks
Provides chunks to Thread-Caches

* Populates a given freelist
Shared by all threads

e Locking is required

CentralCache

Central Freelist

CentralFreelist 1

size_class_

Central Freelist 2

Span empty

Central Freelist 3

Span nonempty

counter

Central Freelist 68

cache size

10

Small Chunk Span Creation

Span

start [—» Allocated Memory
objects = NULL

Span

start —————
objects = NULL

Span

start P —— e S »
objects

 The Span objects list is used as the backend
for FreeList creation for the CentralCache "

N

PageHeap

 Manages chunks of memory allocated front the

system allocators

* Populated on the first call to PageHeap::New
(and as required after this)

* This will trigger an allocation from the System
allocator e.g. VirtualAlloc, mmap, sbrk

e Contains two free lists

e SpanList large

- For chunks bigger than kMaxPages (256 in WebKit)
e SpanList free_[kMaxPages]

- First entry i1s 1 page, second entry 2 pages, and so on

12

Small Chunk
Allocation

13

Small Chunk Allocation

68 different Size Classes *
e Sizes are rounded to the next size class
* 8 bytes Is the minimum chunk size

 Allocations of size 0 are valid and rounded up to 8

 Chunks will be obtained from one of the Thread-Cache
free lists

class 0 —®= i -

class | —® - -~

class 2 —W —~ — .-

14

Get Allocation Size Class
cl = SizeClass(size)

l

Set Thread Cache Freelist
freelist = list_[cl]

o
",

._____.- "'\-.._M
-~ o

,x//IS the freelist ™

empty? ves

* gL

e

o,

.,

Femove The Chunk and /’

Y

return it =" Central Cache H“\\
Freelist Empty?

E Y

yes no

Get Chunks and add
them to the Thread
Cache

Allocate Span from the
FageHeap

Split Span into objectsand put
them on the Central Cache Freelist

15

Large Chunk
Allocation

Large Chunk Allocation

 Handled by the PageHeap

» Allocations of more than 8*PAGE_SIZE are
considered large allocations

 Page aligned
» Can trigger heap growth

17

Lookup anaon
empty Freelist

i

no

h 4

Make Large
Allocation

!

AN

o
/’fﬁllucatim\

Succeeded?
no

!

Grow the Heap

yEs

- S|ze is blgger than .

Return the chunlk

%

requested?

yES

l

Splitinto two
Spans

Add the leftover Span
into the Freelist

T

18

N

Chunk Deallocation

 Small chunks go directly to the ThreadCache free list.

 |f the free list size exceeds 'kMaxFreelListLength'
(256) some of the chunks are moved to the central-
cache free list.

e If the combined size of the chunks exceeds
'kMaxThreadCacheSize' (2<<20) - GC

* Large chunks are inserted on the PageHeap

« Coalescing is triggered if neighboring chunks are
also free.

19

Object Deallocation Flow Graph!

Scavenge

Y

yEs

PN
™,
x”g .

A
K,)ﬂ'l/readl:ache size .
*"\\\F'Er_thread_cache_g

., ize
\\\
.
™

glal

Felease Same
Ohjectsto the
Cantral Cache

P
-~ ‘.H‘M\

7 .

- e
- : .
< s freelist leght » ™~

«—yps—)

I axF reeLiStLerL,,/

o

Delete Span from
the PageHeap

/"—-H

| fastFree(ptr)

+

"\\
&5 ptrV

o—

Get Chunk
PagelD

h

Get dass Size
Fram Cache

Y

2N

i i BN
Get Span ohject |€—no ClassSize was

h J

GSet Jass Size

onthe cache?

Push chunk intro |

freelist

from Span
__’.—"
B es x’/|5|arge \\
) ' ohject?
\.\
N
no
k J
Get Freelist [« Get Thread
Cache

End of Introduction

21

Exploiting Memory Corruption
Bugs in TCMalloc

Security Mechanisms

e Back to 1995

e Allin all, there are no
protections

e Lulz level increased

comex: “The best way to avoid
fighting with the heap is to find
vulnerabilities that aren't heap

overflows”

 Vendors must have
felt sorry for us =D

23

Resurrecting the Dead

* Freeing Invalid Pointers
 ThreadCache FreeList Overflow
e Insert to FreeList[X]
« Span Objects List Overflow
* Insert to Span Objects list
 Double Free

 Span Metadata Overflow
e Unlink
o Strawberry Pudding

24

Freeing Invalid Pointers

N

Freeing Invalid Pointers:
The Bad

 If the pointer has a PagelD (ptr >> kPageshirt)

that has not previously recorded as a Span then
Bad Things may occur

 There is a PageMap object that maps from pointers
to the correct Span containing information about the
page they are within

e At the start of do_free TCMalloc attempts to

retrieve the Span for the pointer using
GetDescriptor (ptr >> kPageShift)

Freeing Invalid Pointers:
The Bad

voilid* get (Number k) const {

ASSERT (k >> BITS == 0);

const Number 11 = k >> LEAF BITS;
const Number 12 = k & (LEAF_LENGTH-1);
return root_[il]->values[i2];

}

* root IS a@n array of 32 pointers, initialized to O
* values IS an array of 32768 pointers, initialized to O

* SO ptr >> kPageshift Must therefore have been
Inserted into the PageMap at some point or ...

Freeing Invalid Pointers:
The Bad

. Bad Things

TCMalloc in WebKit will segfault on the NULL ptr
dereference If root [11] has not been alloc'd

TCMalloc in Chrome detects the above condition
and returns NULL

In both, the values array is initialized to O so
root_[il]->values[i2] Will return NULL if it has
never been set previously

Chrome again detects the NULL return value and
will raise a SIGABRT or similar

WebKit again will kamikaze on a NULL ptr soon
after

N

Freeing Invalid Pointers:
The Bad

 Can be an inconvenience for other techniquies

* Prevents us from free'ing Span header objects as
they are allocated from a separate pool of memory

 We have to be careful not to trigger free calls on
pointers we insert into free lists after they are
handed to the application if they are not in a valid
Span
* As a side note, the above two level array Is
used for 32-bit Linux/OS X, 32-bit Windows
uses a flat array and 64-bit * uses a radix tree

e For our purposes the result is effectively the same

N

Freeing Invalid Pointers:
The Good

* \We can however free any pointer that map
back to a valid Span

« Free'ing large objects (> kMaxSize [32768])

- Free of any address within the first page of the object
free's the object

- The other pages are not linked to any Span
* Free'ing small objects

- Any address that falls within a span recorded as
containing small objects can be free'd

- If the Span contains multiple pages, each page is linked
back to the correct Span header in the PageMap

- The pointer will be added to the free list for size class of
the Span it falls within

Freeing Invalid Pointers:
Large Objects

PageMap

Oxbc31 SPAN_0Oxbc31

Span

start | ——» Page_1 Page_ 2

0xbc31000 Oxbc32000

Freeing Invalid Pointers:
Large Objects

PageMap

Oxbc31 SPAN_0Oxbc31

Span
start | ——» Page_1 Page_ 2

0xbc31000 Oxbc32000

Span
start [—» Page_1
0xbc31000

free(Oxbc31ffff) :)
free(0Oxbc32000) :(

Freeing Invalid Pointers:
Small Objects

PageMap

Oxbc31 SPAN_0Oxbc31
Oxbc32 SPAN_0Oxbc31
Oxbc31000 Oxbc32000

Span
start

Page 1 Page 2

Freeing Invalid Pointers:
Small Objects

PageMap

Oxbc31 SPAN_0Oxbc31
0xbc32 SPAN_0xbc31
Oxbc31000 Oxbc32000
Span start
Page 1 Page 2
Oxbc31000 Oxbc32000
Span start

Page_1 Page_2

N

Summary

* For large objects free'ing any pointer within the
first page free's the entire object

* For small objects free'ing any pointer within the
Span free's that pointer

* This pointer does *NOT* have to be correctly
aligned with the small chunks in that Span

* Therefore we can free part of an in-use chunk if we
want

* |Interesting vector when considering partial
pointer overflows that are later free'd

* Free'ing anything else will end in Bad Things

ZONGE. BUNN'Y/

ThreadCache FreelList
Corruption

36

FreeList[X] Allocation

 ThreadCache FreelList[X]

Freelist
| v

length_=3

A -~ B C

 ThreadCache::Allocate (non empty freelist)

SLL Pop(void **list)
result = *list_;
*list_ = **list_;
return result;

37

FreeList[X] Allocation

length_ =3

SLL Pop(void **list_)
result = *list_;

38

FreeList[X] Allocation

Freelist +
list_=Al s c 0x
length_ =3 A F B C
SLL Pop(void **list_)
result = *list_;
[result = *list_)
Freelist *
list_=A| ,lg c O
length_ =3 A F B C

39

FreeList[X] Allocation

Freelist +
list_=A| ,lg c A~
length_ =3 A F B C
SLL Pop(void **list_)
result = *list_;
[result = *list_)
Freelist *
list_=A| ,lg c -
length_ =3 A F B C
[J
*list_ = **list_;
(result = *list_) return result;
Freelist *
list_ =(*A) B ¢ o
length_ =2 A F Y B C 40

N
Insert to FreeList[X] ‘ I

41

Insert to FreeList[X]

[result = *list_)
Freelist *

length_ =2 A F Y B C
overflow_func(result)
XX
result In use memory region
FreeList T
I]St_ =B FOC O R RO O RO R 00 N]
length_ =2 A T B c

42

Insert to FreeList[X]

length_ =2

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

vl

43

Insert to FreeList[X]

XKXX

In use memory

FreeList T

list_=B HOEOOOCODO0O0OEN0NON000! BN Ox0

length_ =2 A T B C

Allocate(FreeList[X])

XK

Y

In use memory region

FreeList T

list_ = XXXX || HoOEOOOCODO0O0OENoNON0D0! BN ox0

length_=1 A B C

result

44

N

Insert to FreeList[X]

XXXMX

result ———= In use memory region

Allocate(FreeList[X])

Freelist

list_=7727 | | oooo00000000000000000000 W ()

length_=0

 This allocation returns an address we control to
the application as valid heap memory

* Similar to the Insert to Lookaside technique In effect

 The new list head pointer is equal to the first DWORD of
this region

e Caveat: Ensuring our overflow chunk is behind a chunk
In a free list may require some trickery...

FreeList Creation

e |nitial FreeList creation

FetchFromCentralCache
-> CentralFreeList::RemoveRange
-> CentralFreelList::FetchFromSpansSafe
->CentralFreelList::Populate

 FetchFromSpans returns the chunks in address
order but RemoveRange creates its list by
prepending the chunks to the head

* The result — Chunks in a new FreeLlist are
behind a newly allocated chunk

46

N

FreelList Creation: Populate()

Span
start [—» Allocated Memory
objects = NULL
Span
start ——
objects = NULL
Span
start P —— e S »
objects

* Populate (re)sets the objects list of a span into
address order o

N

FreeList Creation:
RemoveRange()

- Freelist
head while (count < num) {
A B c void *t = FetchFromSpans();
Span if (It) break;
start > < |—> < et > SLL_Push(&head, t);
objects
count++;

48

FreelList Creation:

_ Freelist
head

A B C

Span
start S S —
bject r
_ Freelist

head

A B C
Span

start

e Fetc

new

N

while (count < num) {
void *t = FetchFromSpans();
if (!t) break;
SLL_Push(&head, t);

count++;

nFromSpans pops from the head of the
objects list and SLL Push sets each as the

free list head

N

FreeList Creation

y C h u n kS are I n reve rse (gdb) dump free list ©xd42T364
ad d reSS O rd er FrEELlatgtggEgg%éBﬁﬂf Chunk size: 8x58 Length: 31
* Created from the oricoss2
Bxdcaa7se

Span starting at

Bxdcaabed
O d O O O Oxdcaab9o
X C a a Bxdcaabde
Bxdcaasfe
Bxdcaabad
Bxdcaas58
Bxdcaas08
Bxdcaadbd
Bxdcaadbe
Bxdcaad1e
Bxdcaa3co
Bxdcaa37e
Bxdcaa32e
Bxdcaazdd
Bxdcaa2sn
Bxdcaa23@
Bxdcaaled
Bxdcaalsg
Bxdcaalde
Bxdcaadfe
Bxdcaabad
Bxdcaads8
Bxdcaados

N

Crafting the FreelList Layout

e Solution.

 Empty the FreeList and the first Span in the
nonempty list

- The next allocation will retrieve an ordered set of chunks

via Populate etc. from one or more spans and create a
FreelLlist.

- Maximum FreelList lengths differ between browsers
e Safari — 256
e« Chrome — 8192

* Rearrange the FreeLlist via malloc/free calls

51

FreeList Corruption Notes

e ThreadCache::Allocate

* Gives the Insert to FreeList[X] technique — revives
the 4-to-N byte overflow primitive

* Requires an overflow and at least two allocations

- The first allocation to set the list head pointer from our
corrupted chunk and the second to hand back this pointer
to the application

* On allocation of the target pointer the [D|Q]WORD
at this address becomes the FreelList head.
- Need to be wary of further allocations if we cannot set
this to Ox0 (End of List) or ensure that the allocation that

returns the target pointer is the last pointer in the free I|st
(length_ == 0 afterwards)

FreeList Corruption Notes

e ThreadCache::Deallocate

* Generally functions correctly as chunks are
prepended to the FreeList without walking it

 May trigger a call to ReleaseToCentralCache if
FreeList[X]->length() > kMaxFreeListLength

— This In turn causes the FreelList to be walked through
PopRange. If our corrupted chunk is within batch_size
elements from the head of the list the corrupted next
pointer will be followed as will the DWORD at that
address and so on up to batch_size times.

 |f the memory we inserted into the FreeList is not
within a page allocated by TCMalloc and gets free'd
then Very Bad Things'™ happen (Process death) ~

vl

Span Objects List
Corruption

54

N

Span Objects List Corruption

e Hang on a sec...

Span

start > < — » P
objects

* \What about the span objects list?

* Also a singly linked list

* The head resides directly after the FreeLlist
head when a new Span is created and
partially returned as a FreeLlist

55

N

Span Objects List Corruption

 What if we force this situation as before (empty
free lists, trigger call to Populate() to reset Span
object list) and overflow the first chunk returned
iInstead of re-ordering for a FreeList overwrite

56

Span Objects List Corruption

Span

start

————————————

N

result = malloc(size)

57

N

Span Objects List Corruption

Freelist It
head resu
result = malloc(size)
A B C
Span
start > < «— » F—————— »
objects r

Freelist

head —— result HHKX

overflow(result)

In use memary region

Y
-

Span T
start K HAHK
objects r

58

Faking a FreelL.ist

* At this point the old FreelList is untouched

* But... we have trashed the next pointer for the
first chunk in the span objects list,

e The next time TCMalloc tries to build a new
FreeList from this Span it will add the pointer
we control to the list

59

N

Faking a FreeLlist

KKK
result
result = FetchFromSpans();
In use memory region]
A B c . free_list.push(result)
Span
start | HHEK — | KX

objects

60

Faking a FreeLlist

KXXX
result
¢ In use memaory region
Span 4
start HHHK — HAXK
objects
XXX
result v
¢ In use memory region
Span
start HHHK KHHXK

objects = 7777

N

result = FetchFromSpans();

free_list.push(result)

result = FetchFromSpans();

free_list.push(result)

61

Faking a FreeLlist

HAXX

free_list ——» In use memory region ——» XXXX

62

Faking a FreeLlist

XXX

free_list ——» In use memory region ——» XXXX

 What happens next depends on the first [Q|D]word of
the chunk at XXXX

 RemoveRange() will continue to use this Span to build

the new free list until it reaches its limit or empties the
Span

» |deally we want it to be 0x0 so the Span is considered
empty

* |f not then this pointer will be followed and so on until a
0x0 is reached or enough chunks are retrieved 63

N

Summary

 Overflow the head of a new free list (or any chunk béfore a
chunk in a Span object list) and corrupt the next pointer of
a chunk in a Span object list

 Empty the FreelList for that Span object size

* Trigger another allocation of this size, causing TCMalloc to
create a new free list from the non-empty spans

 This allocation will follow our controlled pointer (presuming
no other spans have been added to the nonempty span
list) when building the free list

 The last chunk added is directly returned to the application

* Revives the 4-to-N byte overflow primitive, again

64

9l

Double Free

N

Double Free

 TCMalloc has no protection against this type of
error

* A double free of a pointer simply results in the same
chunk being inserted into the FreeLlist twice

 Acycle In the FreelList is created if the chunk
was not removed from the FreelList between
frees (via allocation or returning to the
CentralFreeList)

* Exploitation - obvious?

 Allocate twice. First as an object containing function
pointers then as a controllable object e.g. a string

Span Metadata Corruption:
Hacking like it's 1995

67

Hello Darkness my old friend

N

static inline void DLL_Remove(Span* span) {

Span

PagelD start

span->prev->next = span->next;

length

span->next->prev = span->prev;

Span *next

span->prev = NULL,;

Span *prev

ref count

span->next = NULL;

size_class

is free

objects

68

N

Overflowing Span Metadata

 New spans created for large allocations
(>0x8000) and when the CentralFreelList runs
out of chunks for smaller sizes

 Metadata for Spans is *not* stored inline with
the pages representing the data

 Span headers are separate objects allocated
from their own PageHeapAllocator (initially a
0x8000 byte pool created via sbrk, mmap or
VirtualAlloc)

69

N

Overflowing Span Metadata

» Overflowing Span metadata is not as
convenient or as common as a FreelList or
Span object list overwrite

* Requires the Span pool to be after whatever
chunk we overflow with no unmapped pages in
between

 May not be possible to ensure this and will depend
on the OS and application embedding TCMalloc

 |f we can force the required memory layout then
this may allow for as many mirrored write-4s as
we can overflow consecutive headers 70

Required Memory Layout

j L Span headers

* Where Is the pool of Span headers
 |f sbrk() is In use then we can force it to be after
the chunks managed by TCMalloc
 If mmap or VirtualAlloc are used then it could be
In any number of locations due to randomization

TCMalloc app data

71

Corrupting Span Metadata

Allocated L
Chunk Span headers

* Presuming we have the correct memory layout,
then what?
* \WWe need an overflow large enough to cover the
gap between our allocated chunk and the Span
metadata

72

Corrupting Span Metadata

Allocated
Chunk Span headers
Corrupted Corrupted
app data headers

Allocated
Chunk Span headers

73

N

Triggering the Unlink

« DLL._Remove is called in a number of places as

part of Span management in the PageHeap and
CentralFreelList

* The most straightforward path to DLL _Remove
appears to be through do _free on a chunk
larger than kMaxSize

* This retrieves the Span header and directly
calls pageheap->Delete(span)

 This In turn can lead to a call of

DLL Remove on headers located before and
after the header 'span’ 74

Strawberry Pudding

<sinan> That's crap. I can make a strawberry
pudding with so many prerequisites
(In reference to some Windows heap technique) 75

N

Strawberry Pudding

 There are countless ways to get interestin

'things' to happen in TCMalloc depending on
what you can corrupt

 The Span metadata unlink is approaching
'strawberry pudding' territory

 Many other fun primitives can be found within
the heap managment routines e.g. consider the
refcount attribute of a Span in the context of a
double free or corrupted FreeLlist

* Entirely unnecessary though =D No integrity
checks, we can win trivially. *

WeDbKit Heap Manipulation

77

Tools of the trade

 Immunity Debugger + GDB

 Immunity Debugger
« GDB (OS X + Android)

e Allows us to dump
Information about the state

of the heap
— Chunk size, etc.
* vmmap

 Accurate view of the state of
a processes memory

78

Heap Primitives

* \We need three simple things
* To allocate memory
* To free memory
* To control the contents of allocated chunks
 Bonus

* Predict the heap layout

79

Current Techniques

* Array Allocation

* No deterministic chunk free

- It relies on the behavior of the garbage collector
Control just the first [Q|D]JWORD

- We are screwed if our function pointer is offset+8

In newer releases of WebKit the array creation is
deferred until the elements are assigned.

- We need to force a reallocation by assigning each one of
the elements of the array.

Summing up, It Is inconvenient

80

Current Techniques

* Plain String allocation

 Rendered useless because of Ropes

- Ropes are a non linear representation of strings
— Astring is represented by a tree of arrays of characters

- Each one of the nodes can be reused by others strings

« Doing a substring on a string does not copy anything, just adds a
new reference to the node/nodes

- We need to find a way to build “linearized” strings
 More on this later

81

Array Technigue

e Control of the first [Q|D]word

« To allocate N bytes ...
= [QID]JWORD_SIZE

E = # of array elements
C = Constant
N=S*E+C
E=(N-C)/S

 We need an array of “E”
elements

« Example allocation

e Green: Controlled DWORD

e Yellow: Partially controlled
DWORD

#

L

L

L

'

r

I

'

'

'

FFFFFFF3

82

Array Spray Example

Allocate 'n' chunks

Size 5*4 + 20

First DWORD is Oxcafecafe
Second DWORD is 0x00000003

function spray(n) {
var hl1 = [];
for (1 =0 : 1 < n;: 1i++) {
h1[1] = new Array(0x5);
h1[1].length = Oxcafecafe; /7 first [Q/DJWORD

h1[1]1[0] = OxbadcOded; /4 second [Q/DJWORD will be 3
h1[1][1] = OxbadcOded;
h1[1]1[2] = OxbadcOded;

}

return hi;

83

Allocation Primitive

* Since there Is no direct fastMalloc availabl
* \We need to get creative

* First approach:
 Just build strings!
* The catch: ropes

» Second approach:

 Take a look at the source code
* Realize what 'unescape' does

84

Unescape

 Unescape takes an encoded
string and decodes it.

 To do so it needs the string In
linear form (ie. No ropes)

 Appends each decoded char to
a StringBuilder

e StringBuilder needs memory to
hold the “unescaped” string.

« Potentially this gives us control
over

» The size of the allocation

* The contents of the created Gl(lllllllls EXPOSITION, cllMIIllllE

chunks

85

String Builder

« Uses a reference counted storage

 Manages memory allocation
automatically

class StringBuilder

e 'unescape' will append the unescaped

unsigned m_length;

characters to the a StringBuilder String m_string:
RefPtr<5tringImpl= m_buffer;
e |f more memory IS needed, UChar* m_buffercCharacters;
appendUninitialized will allocate a new void append(...):
buffer String toString();
unsigned length() const;
o Size Of the new allocation: vold reserveCapacity(unsigned);

vold resize(unsigned);
vold allocateBuffer{const UChar*, unsigned);

* new_size = prev_size + (prev_size >>2) + 1 UChar* appendUninitialized(unsigned length);

. The previous buffer will be freed if

its reference count reaches zero.
« This will be always the case when using

unescape
86

Heap Spray

e String size is divided by two to

- <html=>
take into account that each <body onload="runTest()">
. <script>
character is two bytes function spray(size, n) {
var string_size = size /[2;
. . var str = unescape("%ucafe¥ucafe");
 This will create 50 chunks of var ¢ = unescape("%ul111%01111") .
SiZe OXZCO while (str.length < string_size)
str += C;
var hl1 = [];
h1[0] = str.substring(0, string_size);
for (i =1 ; 1 == n; i++)
h1[1] = unescape(h1[0]1});
return hi:
}
function runTest() {
var pepe = spray(0x2c0, 50);
}
</script>
</body>
</html>

87

N
Heap Spray ‘
e Chunks are contiguous (ie. No

metadata inbetween) B
Heap Spray

Adddress

Bx7feb7 0080 fe
Bx7feb?2cA fe
Bx7feb?7580 fe
Bx7feb78408 fe
Bx7feb7bBa fe
Bx7feb7dca fe
Bx7/febB8B8A fe
Bx7/febB8340 fe
Bx7febB86 88 fe
§] B=7febB88cA fe

 Hence aligned to the object
Size

 The whole contents of the objects
are controlled

« Allows to craft really complex
objects

i
1
P
3
n
L
(i
i
8
o
1

More chunks here

LT Bx7FF7e 080 fe
L7 Bx7FF7e3hn fe
L8 Bx7FF7e6008 fe
49 Bx7/fF7e8cA fe
]) Bx7FF7eb80 fe

88

Heap Spray

m Dump - TFE90000.. FFF8FFFF

FE
$+10 JFEBYA18 22
5+20 fFEBYB28 22
$+30 fFEBY838 22

More data here ...

5+270 fFEBY278 22
$+280 fFEB7288 22
5+200 fFEBY298 22
$+2n0 fFEBY2RA8 22
5+2B0 fFEBY2BA 22
$+2c0 FFEBY2CA FE

22 22 22111 11 11 11
22 22 22111 11 11 11
22 22 22111 11 11 11
22 22 22111 11 11 11

PEpENRER """ NEEN
i | | | Dl |]]
e | | | D |]]
e | | | Dl |]]

i | [[i [] [
e [[[[[
i | [[i [[
e [[[[[
i | [[il [[
pEpENRER"""""REEN

89

Deallocation Primitive

e There i1s no direct 'fastFree' available

* Traditional approach:

e Loop until GC kicks in
 This is not reliable

* Our approach
e Abuse the behavior of the StringBuilder

90

N

Deallocation Primitive

 Unescape appends decoded chars to the StringBuilder

» This will trigger a new allocation
* New_size = prev_size + (prev_size >>2) + 1
- std::vector like allocation behavior
* The previous string will be immediately freed
e Unescape a string bigger than the one we need to free

* This will generate some heap noise

 Must be taken into account
e Most of the times it does not harm

91

Allocation Trace

]

1
m — M — i — M — M — /M — M — /m — m — M — m — 1
m — M — /M — i — 1M —1m — 1M — i — I/ —1m —1m —1m

fas
fas
fas
fas
fas
fas
fas
fas
fas
fas
fas
fas
fas
fastMa
fas
fas
fas
fas
fas
fas
fas
fas
fas
fas
fas
fas
fas

02446
caH

O L I

A 1Heeh G1bAA

1HeedddcH

H=1HBbY36cH

7HEA

s L L

ch54HEE

Ix1HeelZ4BH

Hr 1B 2H90HH

We want to make a h
size Ox79a

N

of

* The corresponding allocation

size 1s 0x820

92

Conclusions

* Asimple heap leaves us
with lots opportunities to
exploit vulnerabilities

ZOMBIE

Fo,d'd.,Fyram id
‘. . Te ®a

 Heap layout modification
IS easy again by using
the “unescape”
technique.

* No heap protections
makes our life easy.

93

Previous Work

e Mark Daniel

e Jake Honoroff

e C
¢ S

nar

KYP

e Miller

ner

94

References

« http://goog-perftools.sourceforge.net/doc/tcmalloc.html
e https://trac.webkit.org/wiki/FastMalloc%20Glossary

* http://securityevaluators.com/files/papers/isewoot08.pdf

95

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://trac.webkit.org/wiki/FastMalloc%20Glossary
http://securityevaluators.com/files/papers/isewoot08.pdf

N
The end ‘ l

THX

AGUSTIN GIANNI SERN HEELAN

AGUSTIN@IMMUNITYINC.COM SERN@IMMUNITYINC.COM
@RAGUSTINGIANNI @SERNHN

mailto:sean@immunityinc.com
mailto:agustin@immunityinc.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

