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Introduction

● The use of Webkit has been increasing steadily
● According to Wikipedia¹, “WebKit powers Google Chrome and Apple's Safari, which in 

January 2011 had around 13% and 6% of browser market share respectively.”

● Webkit Heap is based on TCMalloc
● Source is available

● A custom heap allocator eases the 
development of cross platform exploits.
● They use the same one for every architecture/os
● A single exploit to rule them all.

¹ http://en.wikipedia.org/wiki/WebKit
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Motivation

● Huge surface of attack
● Chrome
● Safari
● Android
● Kindle
● BlackBerry

● Security teletubbies use 
MacOSX
● Finally we can pwn Charlie Miller.
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Basics

● Custom allocator designed with speed in mind
● Generally, speed = less “security checks”

● Thread oriented design
● Each thread gets a thread-local cache.
● Each thread manages its own allocations.

● TCMalloc consists of three different allocators
● Hierarchically arranged

– Higher up allocators serve the lower 
allocators with memory
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Allocator Hierarchy

The PageHeap is closest to the system (highest), the ThreadCache is closest to 
the application (lowest)
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Allocation Sizes

● Chunk sizes are divided into kNumClasses

● WebKit has 68 Size Classes
● Allocations are rounded to the nearest size class

● Small chunks < 8 * PAGE_SIZE

● Allocated from the ThreadCache
● Large chunks > 8 * PAGE_SIZE

● Allocated from the PageHeap
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Spans
● Memory managed by TCMalloc is backed 

by a Span structure

● Sets of contiguous pages 

● Can contain:

● Set of Small Chunks
● Large Chunk

● Span metadata is stored in the Span 
header which is allocated independently of 
the Span data
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ThreadCache

● Front-end allocator for each 
thread

● Contains an array of 68* free-
lists

● Max. elements per free-list is 
256*

● Allocates/Deallocates its 
memory from/to the 
CentralCache

* May differ between applications
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ThreadCache Freelist

● Each size class has its own 
ThreadCache FreeList

● The list_ attribute points to a 
singly linked list of free 
chunks
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Central-Cache

● Is an array of CentralFreeList's

● One per size class

● Obtains/Frees its memory from/to the 
PageHeap

● Splits a Span into smaller chunks

● Provides chunks to Thread-Caches

● Populates a given freelist

● Shared by all threads

● Locking is required
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Small Chunk Span Creation

● The Span objects list is used as the backend 
for FreeList creation for the CentralCache
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PageHeap

● Manages chunks of memory allocated from the 
system allocators

● Populated on the first call to PageHeap::New 
(and as required after this)
● This will trigger an allocation from the System 

allocator e.g. VirtualAlloc, mmap, sbrk

● Contains two free lists
● SpanList large

–  For chunks bigger than kMaxPages (256 in WebKit)
● SpanList free_[kMaxPages]

– First entry is 1 page, second entry 2 pages, and so on
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Small Chunk
Allocation
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Small Chunk Allocation

● 68 different Size Classes *

● Sizes are rounded to the next size class

● 8 bytes is the minimum chunk size
● Allocations of size 0 are valid and rounded up to 8

● Chunks will be obtained from one of the Thread-Cache 
free lists
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Large Chunk 
Allocation
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Large Chunk Allocation

● Handled by the PageHeap
● Allocations of more than 8*PAGE_SIZE are 

considered large allocations
● Page aligned
● Can trigger heap growth
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Chunk Deallocation

● Small chunks go directly to the ThreadCache free list.

● If the free list size exceeds 'kMaxFreeListLength' 
(256) some of the chunks are moved to the central-
cache free list.

● If the combined size of the chunks exceeds 
'kMaxThreadCacheSize' (2<<20) → GC

● Large chunks are inserted on the PageHeap

● Coalescing is triggered if neighboring chunks are 
also free.



Object Deallocation Flow Graph!
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End of Introduction
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Exploiting Memory Corruption 
Bugs in TCMalloc
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Security Mechanisms

● Back to 1995
● All in all, there are no 

protections
● Lulz level increased

comex: “The best way to avoid 
fighting with the heap is to find 
vulnerabilities that aren't heap 
overflows”

● Vendors must have 
felt sorry for us =D 
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Resurrecting the Dead

● Freeing Invalid Pointers
● ThreadCache FreeList Overflow

● Insert to FreeList[X]

● Span Objects List Overflow
● Insert to Span Objects list 

● Double Free
● Span Metadata Overflow

● Unlink

● Strawberry Pudding



  

Freeing Invalid Pointers



  

Freeing Invalid Pointers: 
The Bad
● If the pointer has a PageID (ptr >> kPageShift) 

that has not previously recorded as a Span then 
Bad Things may occur
● There is a PageMap object that maps from pointers 

to the correct Span containing information about the 
page they are within

● At the start of do_free TCMalloc attempts to 
retrieve the Span for the pointer using 
GetDescriptor(ptr >> kPageShift)



  

Freeing Invalid Pointers: 
The Bad

void* get(Number k) const {

     ASSERT(k >> BITS == 0);

     const Number i1 = k >> LEAF_BITS;

     const Number i2 = k & (LEAF_LENGTH-1);

     return root_[i1]->values[i2];

   }

● root is an array of 32 pointers, initialized to 0

● values is an array of 32768 pointers, initialized to 0

● So ptr >> kPageShift must therefore have been 
inserted into the PageMap at some point or ...



  

Freeing Invalid Pointers: 
The Bad
● .... Bad Things

● TCMalloc in WebKit will segfault on the NULL ptr 
dereference if root[i1] has not been alloc'd

● TCMalloc in Chrome detects the above condition 
and returns NULL 

● In both, the values array is initialized to 0 so 
root_[i1]->values[i2] will return NULL if it has 
never been set previously

● Chrome again detects the NULL return value and 
will raise a SIGABRT or similar

● WebKit again will kamikaze on a NULL ptr soon 
after



  

Freeing Invalid Pointers: 
The Bad
● Can be an inconvenience for other techniques 

● Prevents us from free'ing Span header objects as 
they are allocated from a separate pool of memory 

● We have to be careful not to trigger free calls on 
pointers we insert into free lists after they are 
handed to the application if they are not in a valid 
Span

● As a side note, the above two level array is 
used for 32-bit Linux/OS X, 32-bit Windows 
uses a flat array and  64-bit * uses a radix tree
● For our purposes the result is effectively the same



  

Freeing Invalid Pointers: 
The Good
● We can however free any pointer that maps 

back to a valid Span
● Free'ing large objects (> kMaxSize [32768])

– Free of any address within the first page of the object 
free's the object 

– The other pages are not linked to any Span
● Free'ing small objects

– Any address that falls within a span recorded as 
containing small objects can be free'd

– If the Span contains multiple pages, each page is linked 
back to the correct Span header in the PageMap

– The pointer will be added to the free list for size class of 
the Span it falls within



  

Freeing Invalid Pointers:
Large Objects

PageMap

0xbc31 SPAN_0xbc31



  

Freeing Invalid Pointers:
Large Objects

PageMap

0xbc31 SPAN_0xbc31

free(0xbc31ffff)  :)

free(0xbc32000) :(



  

Freeing Invalid Pointers:
Small Objects

PageMap

0xbc31 SPAN_0xbc31

0xbc32 SPAN_0xbc31



  

Freeing Invalid Pointers:
Small Objects

PageMap

0xbc31 SPAN_0xbc31

0xbc32 SPAN_0xbc31



  

Summary

● For large objects free'ing any pointer within the 
first page free's the entire object

● For small objects free'ing any pointer within the 
Span free's that pointer 
● This pointer does *NOT* have to be correctly 

aligned with the small chunks in that Span
● Therefore we can free part of an in-use chunk if we 

want

● Interesting vector when considering partial 
pointer overflows that are later free'd

● Free'ing anything else will end in Bad Things
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ThreadCache FreeList 
Corruption
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FreeList[X] Allocation

● ThreadCache FreeList[X]

● ThreadCache::Allocate (non empty freelist)

SLL_Pop(void **list_)
result = *list_;

*list_ = **list_;

return result;
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FreeList[X] Allocation

SLL_Pop(void **list_)
result = *list_;
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FreeList[X] Allocation

SLL_Pop(void **list_)
result = *list_;
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FreeList[X] Allocation

SLL_Pop(void **list_)
result = *list_;

●

*list_ = **list_;
return result;
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Insert to FreeList[X]
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Insert to FreeList[X]

overflow_func(result)
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Insert to FreeList[X]
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Insert to FreeList[X]

Allocate(FreeList[X])
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Insert to FreeList[X]

Allocate(FreeList[X])

● This allocation returns an address we control to 
the application as valid heap memory
● Similar to the Insert to Lookaside technique in effect

● The new list head pointer is equal to the first DWORD of 
this region

● Caveat: Ensuring our overflow chunk is behind a chunk 
in a free list may require some trickery... 
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FreeList Creation

● Initial FreeList creation
FetchFromCentralCache

-> CentralFreeList::RemoveRange

-> CentralFreeList::FetchFromSpansSafe

->CentralFreeList::Populate
● FetchFromSpans returns the chunks in address 

order but RemoveRange creates its list by 
prepending the chunks to the head

● The result – Chunks in a new FreeList are 
*behind* a newly allocated chunk
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FreeList Creation: Populate()

● Populate (re)sets the objects list of a span into 
address order
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FreeList Creation:
RemoveRange()

while (count < num) {

void *t = FetchFromSpans();

if (!t) break;

SLL_Push(&head, t);

count++;

}
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FreeList Creation:
RemoveRange()

while (count < num) {

void *t = FetchFromSpans();

if (!t) break;

SLL_Push(&head, t);

count++;

}

● FetchFromSpans pops from the head of the 
objects list and SLL_Push sets each as the 
new free list head
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FreeList Creation

● Chunks are in reverse 
address order

● Created from the 
Span starting at 
0xdcaa000
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Crafting the FreeList Layout

● Solution.
● Empty the FreeList and the first Span in the 

nonempty list 
– The next allocation will retrieve an ordered set of chunks 

via Populate etc. from one or more spans and create a 
FreeList.

– Maximum FreeList lengths differ between browsers
● Safari – 256
● Chrome – 8192

● Rearrange the FreeList via malloc/free calls 
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FreeList Corruption Notes

● ThreadCache::Allocate
● Gives the Insert to FreeList[X] technique – revives 

the 4-to-N byte overflow primitive
● Requires an overflow and at least two allocations

– The first allocation to set the list head pointer from our 
corrupted chunk and the second to hand back this pointer 
to the application

● On allocation of the target pointer the [D|Q]WORD 
at this address becomes the FreeList head. 
– Need to be wary of further allocations if we cannot set 

this to 0x0 (End of List) or ensure that the allocation that 
returns the target pointer is the last pointer in the free list 
(length_ == 0 afterwards)
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FreeList Corruption Notes

● ThreadCache::Deallocate
● Generally functions correctly as chunks are 

prepended to the FreeList without walking it
● May trigger a call to ReleaseToCentralCache if 

FreeList[X]->length() > kMaxFreeListLength
– This in turn causes the FreeList to be walked through 

PopRange. If our corrupted chunk is within batch_size 
elements from the head of the list the corrupted next 
pointer will be followed as will the DWORD at that 
address and so on up to batch_size times.

● If the memory we inserted into the FreeList is not 
within a page allocated by TCMalloc and gets free'd 
then Very Bad ThingsTM happen (Process death)
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Span Objects List 
Corruption
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Span Objects List Corruption

● Hang on a sec...

● What about the span objects list?
● Also a singly linked list
● The head resides directly after the FreeList 

head when a new Span is created and 
partially returned as a FreeList
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Span Objects List Corruption

● What if we force this situation as before (empty 
free lists, trigger call to Populate() to reset Span 
object list) and overflow the first chunk returned 
instead of re-ordering for a FreeList overwrite
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Span Objects List Corruption

result = malloc(size)
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Span Objects List Corruption

result = malloc(size)

overflow(result)



  59

Faking a FreeList

● At this point the old FreeList is untouched
● But... we have trashed the next pointer for the 

first chunk in the span objects list, 
● The next time TCMalloc tries to build a new 

FreeList from this Span it will add the pointer 
we control to the list
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Faking a FreeList

result = FetchFromSpans();

free_list.push(result)
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Faking a FreeList

result = FetchFromSpans();

free_list.push(result)

result = FetchFromSpans();

free_list.push(result)
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Faking a FreeList



  63

Faking a FreeList

● What happens next depends on the first [Q|D]word of 
the chunk at XXXX
● RemoveRange() will continue to use this Span to build 

the new free list until it reaches its limit or empties the 
Span

● Ideally we want it to be 0x0 so the Span is considered 
empty

● If not then this pointer will be followed and so on until a 
0x0 is reached or enough chunks are retrieved
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Summary

● Overflow the head of a new free list (or any chunk before a 
chunk in a Span object list) and corrupt the next pointer of 
a chunk in a Span object list

● Empty the FreeList for that Span object size

● Trigger another allocation of this size, causing TCMalloc to 
create a new free list from the non-empty spans

● This allocation will follow our controlled pointer (presuming 
no other spans have been added to the nonempty span 
list) when building the free list

● The last chunk added is directly returned to the application

● Revives the 4-to-N byte overflow primitive, again
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Double Free
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Double Free

● TCMalloc has no protection against this type of 
error
● A double free of a pointer simply results in the same 

chunk being inserted into the FreeList twice

● A cycle in the FreeList is created if the chunk 
was not removed from the FreeList between 
frees (via allocation or returning to the 
CentralFreeList)

● Exploitation - obvious?
● Allocate twice. First as an object containing function 

pointers then as a controllable object e.g. a string
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Span Metadata Corruption:
Hacking like it's 1995
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Hello Darkness my old friend

static inline void DLL_Remove(Span* span) {

   span->prev->next = span->next;

   span->next->prev = span->prev;

   span->prev = NULL;

   span->next = NULL;

 }
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Overflowing Span Metadata

● New spans created for large allocations 
(>0x8000) and when the CentralFreeList runs 
out of chunks for smaller sizes

● Metadata for Spans is *not* stored inline with 
the pages representing the data

● Span headers are separate objects allocated 
from their own PageHeapAllocator (initially a 
0x8000 byte pool created via sbrk, mmap or 
VirtualAlloc) 
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Overflowing Span Metadata

● Overflowing Span metadata is not as 
convenient or as common as a FreeList or 
Span object list overwrite

● Requires the Span pool to be after whatever 
chunk we overflow with no unmapped pages in 
between
● May not be possible to ensure this and will depend 

on the OS and application embedding TCMalloc

● If we can force the required memory layout then 
this may allow for as many mirrored write-4s as 
we can overflow consecutive headers
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Required Memory Layout

● Where is the pool of Span headers
● If sbrk() is in use then we can force it to be after 

the chunks managed by TCMalloc 
● If mmap or VirtualAlloc are used then it could be 

in any number of locations due to randomization
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Corrupting Span Metadata

● Presuming we have the correct memory layout, 
then what?
● We need an overflow large enough to cover the 

gap between our allocated chunk and the Span 
metadata
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Corrupting Span Metadata
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Triggering the Unlink

● DLL_Remove is called in a number of places as 
part of Span management in the PageHeap and 
CentralFreeList

● The most straightforward path to DLL_Remove 
appears to be through do_free on a chunk 
larger than kMaxSize
● This retrieves the Span header and directly 

calls pageheap->Delete(span)
● This in turn can lead to a call of 

DLL_Remove on headers located before and 
after the header 'span'
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Strawberry Pudding

<sinan> That's crap. I can make a strawberry 
pudding with so many prerequisites 
(In reference to some Windows heap technique)
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Strawberry Pudding

● There are countless ways to get interesting 
'things' to happen in TCMalloc depending on 
what you can corrupt

● The Span metadata unlink is approaching 
'strawberry pudding' territory

● Many other fun primitives can be found within 
the heap managment routines e.g. consider the 
refcount attribute of a Span in the context of a 
double free or corrupted FreeList 

● Entirely unnecessary though =D No integrity 
checks, we can win trivially.
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WebKit Heap Manipulation
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Tools of the trade

● Immunity Debugger + GDB

● Immunity Debugger 

● GDB (OS X + Android)

● Allows us to dump 
information about the state 
of the heap

– Chunk size, etc.
● vmmap

● Accurate view of the state of 
a processes memory



  79

Heap Primitives

● We need three simple things
● To allocate memory
● To free memory
● To control the contents of allocated chunks

● Bonus
● Predict the heap layout
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Current Techniques

● Array Allocation
● No deterministic chunk free

– It relies on the behavior of the garbage collector
● Control just the first [Q|D]WORD

– We are screwed if our function pointer is offset+8
● In newer releases of WebKit the array creation is 

deferred until the elements are assigned.
– We need to force a reallocation by assigning each one of 

the elements of the array.
● Summing up, it is inconvenient
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Current Techniques

● Plain String allocation
● Rendered useless because of Ropes 

– Ropes are a non linear representation of strings
– A string is represented by a tree of arrays of characters
– Each one of the nodes can be reused by others strings

● Doing a substring on a string does not copy anything, just adds a 
new reference to the node/nodes

– We need to find a way to build “linearized” strings
● More on this later
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Array Technique

● Control of the first [Q|D]word

● To allocate N bytes ...
● S = [Q|D]WORD_SIZE

● E = # of array elements

● C = Constant

● N = S * E + C

● E = (N – C) / S

● We need an array of “E” 
elements

● Example allocation

● Green: Controlled DWORD

● Yellow: Partially controlled 
DWORD
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Array Spray Example

● Allocate 'n' chunks 

● Size 5*4 + 20

● First DWORD is 0xcafecafe

● Second DWORD is 0x00000003
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Allocation Primitive

● Since there is no direct fastMalloc available
● We need to get creative

● First approach:
● Just build strings!
● The catch: ropes

● Second approach:
● Take a look at the source code
● Realize what 'unescape' does
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Unescape
● Unescape takes an encoded 

string and decodes it.

● To do so it needs the string in 
linear form (ie. No ropes)

● Appends each decoded char to 
a StringBuilder

● StringBuilder needs memory to 
hold the “unescaped” string.

● Potentially this gives us control 
over

● The size of the allocation

● The contents of the created 
chunks
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String Builder

● Uses a reference counted storage 

● Manages memory allocation 
automatically

● 'unescape' will append the unescaped 
characters to the a StringBuilder

● If more memory is needed, 
appendUninitialized will allocate a new 
buffer 

● Size of the new allocation:

● new_size = prev_size + (prev_size >> 2) + 1

● The previous buffer will be freed if 
its reference count reaches zero.

● This will be always the case when using 
unescape
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Heap Spray

● String size is divided by two to 
take into account that each 
character is two bytes

● This will create 50 chunks of 
size 0x2c0
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Heap Spray

● Chunks are contiguous (ie. No 
metadata inbetween)

● Hence aligned to the object 
size

● The whole contents of the objects 
are controlled

● Allows to craft really complex 
objects



  89

Heap Spray
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Deallocation Primitive

● There is no direct 'fastFree' available
● Traditional approach:

● Loop until GC kicks in
● This is not reliable

● Our approach
● Abuse the behavior of the StringBuilder



  91

Deallocation Primitive

● Unescape appends decoded chars to the StringBuilder

● This will trigger a new allocation
● new_size = prev_size + (prev_size >> 2) + 1

– std::vector like allocation behavior
● The previous string will be immediately freed

● Unescape a string bigger than the one we need to free

● This will generate some heap noise

● Must be taken into account
● Most of the times it does not harm
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Allocation Trace

● We want to make a hole of 
size 0x79a

● The corresponding allocation 
size is 0x820
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Conclusions

● A simple heap leaves us 
with lots opportunities to 
exploit vulnerabilities

● Heap layout modification 
is easy again by using 
the “unescape” 
technique.

● No heap protections 
makes our life easy.



  94

● Mark Daniel
● Jake Honoroff
● Charlie Miller
● Skypher

Previous Work



  95

References

● http://goog-perftools.sourceforge.net/doc/tcmalloc.html

● https://trac.webkit.org/wiki/FastMalloc%20Glossary

● http://securityevaluators.com/files/papers/isewoot08.pdf

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://trac.webkit.org/wiki/FastMalloc%20Glossary
http://securityevaluators.com/files/papers/isewoot08.pdf


  96

Questions?

Sean Heelan
sean@immunityinc.com
@seanhn

The end

Agustin Gianni
agustin@immunityinc.com

@agustingianni

THX
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