

Conference Hash Functions

Conference Center of the Jagiellonian University Przegorzały (Kraków)
Jun. 24th, 2005

Hirotaka Yoshida
Systems Development Laboratory, Hitachi, Ltd., Japan
Alex Biryukov, Bart Preneel
Katholieke Universiteit Leuven, Belgium

- Introduction to some resistances of hash functions
 - Cryptanalysis of hash functions in encryption mode.
 - Description of the Biham-Chen attack
 - Applications to MD5 and a SHA-256 variant
 - Conclusions

Near-collision resistance

- Resistance against attacks finding a pair of hash values which differ in only small number of bit positions.
- Pseudo-collision resistance
 - Resistance against collision attacks where different initial vectors can be chosen.
- Randomness
 - Resistance against attacks distinguishing it from a random function.

Pseudo-collision resistance

The MD-construction

- Resistance when 2 inputs controlled.
- Important in the theory of the MDconstruction
- There could be some application which requires the underlying hash function to have this resistance
 - Knudsen et al, Preimage and pseudocollision attack on MD2, FSE2005

Hash Function in encryption mode

Cryptanalysis of Hash functions in Encryption Mode

- Differential cryptanalysis of SHA-1
 - Handschuh et al., SHACAL, Submission to the NESSIE project, 2000.
- Slide attack on SHA-1
 - Saarinen, Cryptanalysis of Block Ciphers Based on SHA-1 and MD5, FSE2003.
- Attack on MD5 which finds one high-probability differential characteristic.
 - Saarinen, Cryptanalysis of Block Ciphers Based on SHA-1 and MD5, FSE2003.
- Attack which distinguishes HAVAL from a random function.
 - Yoshida et al., Non-randomness of the Full 4 and 5-pass HAVAL, SCN2004.

Description of Biham and Chen attack

- Near-collision attack on SHA-0
 - Biham and Chen, near-collision of SHA-0, CRYPTO 2004

- Start the collision search from some intermediate round r.
- Use messages generated from neutral bits

- Neutral bits do not affect the difference for r rounds.
- Obtaining k(r) neutral bits allows to generate a set of $2^{k(r)}$ messages.
- Using this set gives us a better probability for r rounds than the probability when using a set of randomly chosen messages.

We assume:

- A differential characteristic, has already been found
- the key value K is fixed to one value $K = K_0$

E(K, P)

- defines the expected
 differences _r of the values
 of all registers in each round.
- Definition. (P, P') conforms to r if the differences at the output of the first r rounds are as expected.

: differential characteristic ₀= Input difference round 0 round 1 *r* rounds round r-1

Assume that (P, P') conforms to

If (Q, Q') conforms to , the i-th bit is called neutral bit.

Assume that (P, P') conforms to $_r$ Let i -th bit and j -th bit be neutral bits.

If (Q, Q') conforms to f, there is an edge between i-th bit and j-th bit.

An algorithm for finding a 2-neutral set

Step1: Find a pair of plaintexts that conforms to r for some r

Step2: Find the set *S* of singles of neutral bits

Step3: Find neutral pairs in *S*

Step4: Count the number of edges for each element of *S*

Step5: If the resulting set is a neutral set, break

Otherwise remove from S one of the elements which

has the least number of edges.

Let the resulting set be S go to step 3

neutral bits
 do not affect
 the
 difference for
 r rounds.

Application to MD5 hash function

- Attacks on MD5
 - Attacks for finding collisions (Wang et al., Eurocrypt 2005).
- Attacks on the compression function of MD5
 - Attacks for finding pseudo-collisions (Dobbertin. Cryptanalysis of MD5 Compress., at Eurocrypt '96 rump session)
 - Attacks for finding pseudo-collisions (Saarinen, FSE 2003)

Saarinen's iterative characteristic

Experimental results

- 4 different non-linear functions are used.
- It is interesting to see the improvements for each of the 16 rounds.

Probability comparison

Rounds	Previous probability	Improved probability
0-15	2-16	2-6.46
16-31	2-16	2-9.33
32-47	1	1
48-63	2-16	2-7.22

Observations

- The obtained sets could be too small to attack many rounds.
- When r is increased, the number of edges for each element is rapidly decreased.

Experimental results

A set of neutral bits of size 34 for r = 7, which is almost 2-neutral (The bits are numbered in the range 0, ..., 127)

P = 0x938858dc 0xf310b6b4 0xa9f02359 0x1207a9e3

P'= 0x138858dc 0x7310b6b4 0x29f02359 0x9207a9e3

 $S = \{3,4,6,8,9,13,20,21,22,30,33,34,40,41,43,47,57,58,59,62,65,66,74,88,96,104,105,106,107,108,113,123,125,126\}$

- Probability of the 49-round characteristic obtained from S is about 2⁻²⁷, which is 2⁶ higher than the original probability.
- In practice, we found 132 pseudo collisions for 49 rounds of MD5 with complexity 2³⁴

Plaintext pair which produces a pseudo collision for 49 rounds:

Q = 0xd3b8788c 0xf910b4b6 0xa9f02359 0x1a05b4e3

Q'= 0x53b8788c 0x7910b4b6 0x29f02359 0x9a05b4e3

Application to a SHA-256 variant

One-round iterative for a SHA-256 variant (SHA-2-XOR) presented

Yoshida et al. Analysis of a SHA-256 variant., at FSE 2005 rump session

All Rights Reserved, Copyright © 2005, Hitachi, Ltd.

Conlusions

- We discussed some resistances and tried to apply the Biham-Chen attack to study hash functions regarding these resistances.
- Some improved results on MD5 and a SHA-256 variant were presented.
- The generic approach here may find interesting results on hash functions regarding these two resistances for which differential characteristics have been already found.