
RR
ecently, I’ve been wondering whether I am slowly
turning into a dinosaur. I am not sprouting three
horns or acquiring T-Rex teeth, but I am beginning to

consider the possible extinction of the UNIX species. More
of my work seems to be migrating to various Windows-based
systems with their supposedly friendly mouse-driven GUI
interfaces. For example, I’m generating images for my Web
site using Corel Corp.’s suite of graphics programs. I’m doing
more document writing using Microsoft Word because that is
what the customer wants.

However, and perhaps
here’s the dinosaur bit,
I keep returning to my
UNIX systems to do any
substantial job. I return
to a command line-based
interface, like an old
friend, whenever I want to
process many files, or per-
form some repetitive task
on a set of files. I return
to my UNIX editor for text
generation and I often
import that text into Word
as a final formatting step.

Now, I am not one of
those people who resists
change at all costs. I like to
look at new things that
come along. If I don’t like
something, I usually spend
time to make sure that my
dislike has better reasons than “the system is different from
that which was there before.” In computing, it’s easy to trun-
dle along using what you know now and never pick up any-
thing new.

What worries me is that the world seems to have totally
and unquestioningly embraced the GUI-based Microsoft
interface. With NT, Microsoft seems to have understood
that to kill off UNIX, it will have to make a system that does
not crash at the slightest problem. After all, crashing machines

and lost work are tangible problems, problems that people
undoubtedly complain about.

What’s interesting is that the business world has leapt
for Microsoft-based products in the certain knowledge that
there is no effective support for the software. Microsoft and
PC software vendors are about as approachable and respon-
sive to complaints as the proverbial dead whale that was
hard to kick up a beach.

It’s less obvious to me whether users ever ask if the
human interface to the
Windows system is “cor-
rect” in some intangible,
perhaps academic sense.
Microsoft has pushed the
Windows GUI at users,
who simply accept it.
Basically, I think about
the interfaces that I use,
and I consider that cur-
rent GUI-driven inter-
faces leave a lot to be
desired.

To be sure, many
problems are caused
by poorly thought-out
design at the application
level, rather than intrin-
sic, fundamental diffi-
culties with the system.
But even apart from poor
design in applications,
I believe that the inter-

faces don’t scale; they only work well for simple operations.
Once things start becoming complicated, the interfaces
stop being friendly and begin to be battlefields where the
user fights the system to get the work done.

To expand a little on what I mean, let’s look at something
simple. One of the things that we do all the time is move
files about the file system. It’s one of the fundamental opera-
tions that are needed in any operating system. Of course,
“moving files” sounds simple but isn’t. Do we want the

26 SUNEXPERT Magazine January 1997

M
IC

HE
LL

E
FR

IE
SE

NH
AH

N
W

IL
BY

The Trouble with Windows

UU NIX BasicsNIX Basics by PETER COLLINSON, Hillside Systems

original file left in place? Are we relocating the file or just
renaming a file? If we are moving files from one part of the
file system to another, then we need to know something
about the destination directory. Will we overwrite some
important file at the destination?

In Windows, copying files is visual. You open two win-
dows on the screen, one for the source directory and one for
the destination. You click on the file that you want to move
and drag it into the destination directory. The system realizes
what you are doing and copies the data from the source to
the destination directory. Sounds easy? Yes, and it should be.
Drag and drop is intuitive and works well, or should.

However, on my NT 4 system, brain-dead design decisions
kick in. My view of human interfaces is that it’s important to
be consistent. If the system acts one way while presenting
some image to the user, then the system should always act in
that way. So drag and drop should always be consistent in the
way that it handles files. However, on NT, if I drag and drop
files within a single disk, then the system assumes that I want-
ed to relocate the file and will delete the original. If I am copy-
ing files to another disk or another machine, then the system
thinks that I want a copy and leaves the original file alone.

There are undoubtedly good reasons why the drag-and-
drop action has different results depending on context, but
I think that it should not. To be fair, there is an attempt to
show the change in state because the cursor changes shape
when I enter the different windows. However, I had not
noticed this change until it was pointed out to me by a sea-
soned Windows user. So the effect on the GUI was not as
pronounced as it might be. Now that I have noticed the
visible indication of what will happen, I expect to use drag
and drop more often.

Up to now, I have always copied files using the File

menu, which is predictable but fiddly. I select a file that I
want to copy from the source window, use Cut and Copy,
depending on what I want to happen, find the destination
window and Paste it in. When I first used this mechanism,
I thought it was a tad counterintuitive, and although I have
become used to the metaphor, I don’t necessarily feel it’s a
valid one.

Let’s add a further complication. If I want to selectively
copy several files from a directory, then I need to select those
files before Cut ting or Copying them. This is done visually,
using one of the things that I hate about GUIs: secret key
combinations. To select more than one object you hold down
the Control key and click with the mouse on several files.
Alternatively, you can hold down the Shift key and select a
range of files. It’s quite hard to find out about the Shift option.
I only discovered it by accident because it’s next to the
Control key.

I detest these secret options because the whole point of
the Windows GUI is that everything a user can do is visible.
A menu option may not be available and be grayed out, but
the choice remains visible. I don’t agree with this modus
operandi, but that’s another issue.

Since the fundamental theory behind the interface design
is that everything is visible, users don’t expect to look for the
secret parts of the interface that the mode-changing keys

represent. Also, when you discover the keys, there is nothing
in the interface that tells you that your mouse clicks will do
something different because you have a key pressed on the
keyboard. I am not sure what should change, but it would
be simple to use a new cursor shape to indicate the selection
mode.

Incidentally, while writing this column, I’ve discovered
another feature about these file lists. You can type letters into
the keyboard and the selection box will jump to an appropri-
ately named file. I’ve also learned from the help files that in
Windows Explorer, and only in Windows Explorer, you can
group files by capturing the files inside a box controlled by
holding down the mouse button.

Command Lines
Now I am going to talk about UNIX command line

input, and you are all going to think that I am saying it’s
better. Your hands are poised to send me mail saying you
are convinced that I am a UNIX junkie and I don’t want to
alter. Well, that’s not true. I make considerable use of the
file-copying systems on NT and rarely use its command line
interface. In fact, my NT keyboard usually lives on top of
the monitor so I have to reach up for the Control or Shift
keys. I don’t intend to say that UNIX is better, but I am
using UNIX as an example of a well-developed human inter-
face to illustrate where I believe there are shortcomings in
the GUI-based systems.

If we return to our file copying example, you know that
we copy single files on UNIX by using either the cp or mv

commands. The basis of using a command line is that we
supply arguments to a program that does the work for us.
To use the system, we have to learn that the commands
exist and know their names. Certainly, UNIX command
names can be extremely counterintuitive. Like Windows’
hidden keys, UNIX hides its features and we have to seek
them out. However, UNIX doesn’t hide this fact from its
users. People are supposed to Read The Fine Manual.

We don’t have to learn anything particularly special about
how commands are used. After a short time of using UNIX,
people acquire an expectation of how commands on the sys-
tem will behave, how they are controlled, and how they are
used in combination with other commands.

It’s true that users sometimes don’t appreciate why certain
aspects of command invocation operate the way they do, for
example, why does

$ cat afile bfile > afile

not work intuitively? It’s reasonable to expect that the com-
mand adds the contents of afile and bfile and places the
result back into afile . It doesn’t work because the shell
opens the output file afile before it executes the cat com-
mand, so the contents of afile have been set to zero before
the cat command has a chance to execute. On UNIX there
is a consistency of result, even if the result is sometimes bad.

When telling someone else about a UNIX command, we
usually just have to say the name of the command and
perhaps give some indication of any odd arguments the

28 SUNEXPERT Magazine January 1997

UNIX BASICS

program may have. The user then understands how to use
that command. It’s a little like language acquisition, the
user is given a new verb (to flipple) and will know how to
cope with the past tense (I flippled) or how to create an
adverb (it went flipplingly).

This preknowledge of use is an aspect of the UNIX user
interface that is often forgotten. People hold up the find or
dd commands with their odd arguments as examples of why

UNIX is hard to learn. But once users understand the argu-
ments, they will know how to make dd read from a file, or
how to make find output go into the sort program.

If we are copying single files, then we will expect to do
some typing. Not only will we type the name of the com-
mand, but also the names of the source and destination files.
The system helps us by maintaining the current working

directory for a process, so file names can be typed relative to
that directory. However, if we are copying files across the file
system, we will expect to type the full path name for at least
one of the file arguments. Over time, UNIX has developed
several ancillary mechanisms that help us to input long path
names with more ease.

The first of these mechanisms was perhaps the tilde
character, allowing the user to specify their home directory
trivially and in a position-independent manner. Later,
automatic file and command name completion was taken
from the Tenex system and implemented.

I make considerable use of the ability of the bash shell
to expand path names dynamically. If I type the first few
letters of a file name and hit the Tab key, then the shell will
look in the directory that the file is in, and, if a unique
match is found, will complete the file name automatically.
Path name specification has become as easy as clicking with
the mouse in a dialog box: You type a character, hit tab for
expansion, type another character, hit tab again and so on.

The other feature of which I make considerable use is
the character-based cut and paste using the mouse that is
supplied by the X Window manager. This lets me sweep
out a set of characters in one window with one mouse
action and insert the characters into another window using
a single mouse click.

However, there is no escaping that even with these aids,
it’s much easier to use drag-and-drop mechanisms that
visual GUIs give us. It’s harder on UNIX, which wants us

SUNEXPERT Magazine January 1997 29

UNIX BASICS

It’s a very short step from this single

file copy statement to one that

moves many files. Very early on,

UNIX users are taught that they can

move many files using shell file

name expansion characters.

to build up a text line like

% cp srcfile /usr/file/dest/srcfile

ready for execution to make a file copy. Typing this line takes
considerably more basic knowledge of the system than the
equivalent drag-and-drop action.

However, this knowledge is a building block. It’s a very
short step from this single file copy statement to one that
moves many files. Very early on, UNIX users are taught that
they can move many files using shell file name expansion
characters. The command

% cp src* /usr/file/dest

copies all the files starting with the string src to the destina-
tion directory, ignoring any other files. A simple pattern is
used to specify a group of source files and perform a com-
mand several times using the matched files as arguments.

Again, there’s some basic knowledge that is needed about
expansion of file names. The expansion is done by the shell,
which then calls the command with the expanded list.
Placing the expansion in the shell sometimes has odd effects
but makes sense because the expansion can be used consis-
tently with all commands. We are not dependent on the
application writer to provide correct implementation of this
part of the human interface.

Using pattern-matching characters to generate arguments
also means that we don’t have the possible problem of missing
a file that we want to copy. Once we’ve issued the command
we know that all the files that we have specified will be copied.
We don’t have this certainty on Windows when copying many
files via selections in dialog boxes. It’s very easy to miss files
that we should have copied, and so we have to spend time
making sure that the destination directory contains all the files
that we want it to hold.

UNIX also offers other types of pattern matches, which
helps us to pinpoint the files that we want to copy. For
example, the question mark character matches any single
character, so ?? will match all the file names that are exactly
two characters long. This option is perhaps much less useful
than the ability to match character ranges. For example,

$ cp [a-ln-z]*.c /usr/dest

copies all the files that don’t start with the letter “m” to the
destination directory.

Learning Loops
I suppose the next step in complexity that follows on

from the ability of the shell to expand file names is the use of
the for or foreach loop that shells support. When this is
coupled with the shell’s ability to manipulate strings, we
move onto a new plane of usefulness. Here’s something I
type into the machine without thinking twice:

$ for name in *.c

> do

> mv $name $name.old

> done

or in csh

% foreach name (*.c)

? mv $name $name.old

? end

Both are shell loops, the for or foreach statements supply
a shell variable name that is set to different values while the
statements in the loop are executed. In this example, the
variable name will be successively set to each of the names of
the files in the current directory that match the pattern *.c .
The string $name in the mv commands is replaced by the
contents of the variable before the command is executed.
The loop executes several mv commands, each one moving
one file from its old name of say program.c to a new name
of program.c.old .

Moving the file names back to their original positions
uses a new command and a new concept in the shell:

$ for name in *.c.old

> do

> dest=`basename $name .old`

> mv $name $dest

> done

or in csh

% foreach name (*.c.old)

? set dest = `basename $name .old`

? mv $name $dest

? end

The new command is basename , and its job is to decon-
struct strings. For example,

% basename fred.c.old .old

fred.c

The command is given an argument containing the file name
that we want to take apart, and the string that we expect will
occur at the end of that string. It prints its result to standard
output. This is where we apply the new concept. The back-
quote operator takes the result of a command that it executes
and reads the data back into the shell. In fact, we then place
the result of the command into a shell variable dest .

Now, we have not come very far. None of these loops
use constructs that are very far removed from typing a single
command. The basic knowledge that was learned to copy a
file extends seamlessly to give us the ability to express com-
plicated file copies involving the renaming of selective files.
Because the shell is a language, we can insert any processing
element in the loop, applying a command selectively to a set
of files. Also, it’s a very short step from here to take one of
the loops and create a new command file that can be used
to save typing.

30 SUNEXPERT Magazine January 1997

UNIX BASICS

This type of complexity is just not easily available with
GUI-based interfaces, and the lack of it hurts. To be fair,
there are attempts made to provide script-based program-
ming interfaces for various tools. But a huge leap in knowl-
edge is needed to go from using the GUI to using a script.

Many of the systems have internal script languages
based on some variant of BASIC. For example, these arti-
cles are written using a subset of troff markup but are
dispatched using RTF format. I automatically generate the
RTF using Word. I first pass the source file through a small
C program to generate some markup and then into Word
for processing by some macros that I have written, translat-
ing my limited troff constructions into Word markup.

One of the Corel packages provides an event recorder,
so you can teach it some action sequence and redo the
sequence on new data. But it turns out that not all the
actions are recorded, and it’s hard to parameterize the
actions. I will confess to have given up when I discovered
that it would not record all the actions that I needed to
take an AVI movie and split it into one file per frame. I
ended up making all the key clicks by hand in an error-
prone way.

Finally, the Corel suite has a script editor and debugger.
Sadly, this is made very hard to learn. The printed manual
says, “We can do all these neat things and you’ll find all the
details in the on-line help.” But there is no effective way of
progressing sequentially through the on-line help so that
you might have some chance of learning how to use the
package. Click on the Help button in the package and you
are presented with a nice-looking finder. When you select
an item in the finder, you get a screenful of text, but the
finder goes away. There is no easy way back to the place
that caused the text to be displayed. You have to start the
finder from the beginning each time.

In Summary
Again, don’t think I am advocating that we should all

use the UNIX command line because it’s somehow superi-
or to the GUI-based Windows interface. I’m not. I am
simply pointing out several deficiencies in the current
GUI-based interfaces, deficiencies that seem to have no
easy solution.

First, I believe the lack of the notion of a current working
directory, or at least the lack of coherent handling of the cur-
rent directory, to be a serious deficiency. Commands work
fine when you read and write data in one directory, but once
you start moving data from one point in the file system to
another then each application seems to deal with the current
directory in its own way. I seem to spend an inordinate
amount of time using those file finder dialog boxes.

Second, the fundamental problem is that Windows has
no easy way of using its applications in a batch fashion
except by using some human as a sequencer, whose job is
to sit there and press the buttons. It’s not easy to use the
applications as part of some other tool, and consequently,
there is very little extensibility. We are forced to rely on the
designers of the package thinking about all the ways we
might want to use their programs.

Third, having a interchangeability of data is a good thing.
The common denominator on UNIX is text files. Most of
the tools use text as their building blocks, allowing users to
create new processing elements, transforming new data in
new ways. The power to create new processing elements is
firmly in the hands of the users. I will agree that these users
have a learning curve to surmount.

Windows tries to achieve the same end with objects.
Where objects do fit together, they fit together well. The
problem is that the fitting together needs an expert program-
mer, and the required expertise is far from trivial to learn.
With Windows, the power remains firmly in the hands of
the developers, and I see this as a problem.

Fourth, scalability is a must. I should be able to process
many source files as easily as I can deal with one. This appears
to be a serious problem with current Windows systems.

Finally, there really is insufficient attention paid to the
way that the GUI works. It’s very inconsistent, and it’s usual-
ly impossible to obtain the reasons why it behaves in the way
that it does. I find this is my biggest objection. ✒

Peter Collinson runs his own UNIX consultancy, dedicat-
ed to earning enough money to allow him to pursue his own
interests: doing whatever, whenever, wherever… He writes,
teaches, consults and programs using Solaris running on a
SPARCstation 2. Email: pc@cpg.com.

SUNEXPERT Magazine January 1997 31

UNIX BASICS

	The Trouble with Windows
	Command Lines
	Learning Loops
	In Summary

