
UNIX Basics
by Peter Collinson, Hillside Systems

28 SunExpert Magazine ■ July 1998

DE
NI

SE
 O

RT
AK

AL
ES

Device Independence
CC

omputers were once deeply
expensive objects, ensconced
in their own cathedrals in which

their users worshipped. Well, I suppose
the users didn’t actually get into the
cathedral often. Your deck of cards was
conveyed to the appropriate entry device
by a machine-servant–a priest known as
an operator–whose job was to tend to
the needs of the machine. The operator
returned to you a wad of large pieces of
paper containing your results (more likely
they stuffed it into an oversize pigeonhole
somewhere). If you were lucky, you could
move onto the next problem; if not, you
needed to edit the cards and try again.

Many of these early batch operating
systems were designed to enable their
programs to be run without any know-
ledge of their actual input or output
devices. The programs were “device inde-
pendent.” This was important in busy
machine rooms where the card readers
and printers were bottlenecks. You wanted
to be able to feed cards into any reader
that had space, and take output from any

printer. This became more important
with later systems when cards and output
were spooled to disk. Even though the
program was receiving 80-column card
images, or printing formatted output, the
actual data was stored on some disk on
the system until it was needed.

UNIX was designed with this legacy,
the notion that programs should be de-
vice independent. Device independence
is achieved by making assumptions about
how programs behave. The most basic
assumption is that all programs read
and write streams of data. It’s generally
true to say programs that manipulate in-
formation will read some information,
do some work and output the answer.
We make the generalization that when
you read from any device you’re returned
a stream of bytes, and, when you want
to output to a peripheral or file, we
also make the program write a stream
of bytes. We assume nothing about the
data itself, it is just moved, byte by byte,
from one place to another.

So streams of data are typeless, and

UNIX makes no assumptions about their
contents. Actually this is true about files
too. The system doesn’t know which
files on its disks contain binary data and
which contain text. It doesn’t know that
file.gif contains a bitmap picture. File
names are only used as tags for humans.
Typeless files are generally a good thing
because the programmer is not constrain-
ed to a set of operations the system de-
signer thought were appropriate for that
particular file type. It’s proved to be an
inconvenience when we want to display
different icons for different files in visual
file manager programs.

Data Streams
Any program that reads or writes data

streams makes assumptions about how
the streams will behave. The program is
at liberty to read as much or as little of
its input stream as it likes. However, the
program also has to know that when
reading data, it may be supplied with less
information than it requested. An output
data stream means that the program is

UNIX Basics

free to write data in huge chunks or in single bytes. The
operating system kernel will cope with converting that
erratic output into some suitable form for sending to the
target device.

Of course, real-world devices rarely deal in data streams.
When you write a file to disk, you typically expect to write 512
byte blocks of data. If a program is writing a data stream to a
disk, it’s allowed to send irregular-size chunks. We must arrange
for the kernel to retain the data until it has a filled block that
can be written to the disk. We need to provide some code in the
kernel that presents a data stream interface to the program.

Similar actions are needed to provide the program with the
illusion it is reading a data stream. If the program is reading
from a disk file, then it can ask to be sent small amounts of in-
formation and the operating system needs to store the remain-
ing data until it is needed. Conversely, if the program asks for
huge amounts of data, then the operating system needs to read
several blocks from the disk before it can return control to the
calling program having satisfied the read request.

At some point the file will end and the program needs to
be told the stream has finished. UNIX tells programs they
have reached the end of a file by returning zero in response
to a read request. Typically, a UNIX program will process a
file by using a loop to read a fixed-size block of data. When
taking data from the disk file, the kernel will return exactly
the number of bytes requested until the end of the file is
reached. The program is always told how many bytes have
been read on any successful request. The last read from the
file may return some number of bytes that partially fill the
fixed-size block. Thus, in the loop that processes the data,
the program can never assume it has received the number of
bytes it requested. The last block is likely to be smaller and
the program must always examine the byte count supplied by
the kernel. The next read request will return zero, which the
program will recognize as the end of the file.

Serial Devices
The data stream model used for disk files also needs to map

onto other peripherals. Many output devices, such as printers
or terminal screens, already expect to be sent a stream of bytes.
All devices are very slow in comparison to CPU speeds, and any
program writing to the device will generate bytes much faster
than they can be sent to the peripheral. The kernel will never
have enough buffer space to store masses of data. So when the
program writes a huge amount of data, the kernel will arrange
for the program to wait until some bytes have drained out of
the system and onto the peripheral. The trick is to wake the pro-
gram before the kernel buffers have completely emptied so there
is always data ready to be sent to the output device.

Also, the operating system may need to do some work to
translate internal sequences used in UNIX into other characters
the device may need. For example, the device may not support
tab characters, so the kernel will need to translate a tab character
into an appropriate number of spaces. More commonly, there
is the problem of new lines. In disk files, UNIX uses a single
character (line feed) to represent the “end of a line.” When the
output driver sees the end-of-line indicator, it will typically

need to translate it into two characters: carriage return and line
feed. For a physical printing device, carriage return makes the
printing head return to the start of the current line, and line
feed moves the paper up one line. Splitting the new line action
into its components allows for overprinting and also gives time
for the printing mechanism to settle down. Electronic devices
like VDUs with no printing head or paper mimic this behavior.

Incidentally, there is no representation standard for the end
of a line. MS-DOS descendants store both a carriage return and
a line feed character at the end of each line, while Macintosh
operating systems use a single carriage return. These differences
may cause problems if you copy files between systems without
doing the correct conversion.

Terminals, Keyboards and Screens
The most common serial device is a keyboard attached to a

terminal–and terminals present a more complex set of problems.
We need to map somewhat erratic human typing behavior into
a stream of data that is sent to a running program (a process)
when it asks for data with read request. At the same time, we
will be presenting the user with output from processes. Of
course, these days, you’re typing into a window on a screen,
but the mechanisms you’re using are largely unchanged from
the original interfaces designed to support terminals attached
by a serial line to the computer.

To get a handle on the complexity, let’s start at the beginning
and look at normal behavior. We’ll assume that a process has
decided to read information from your keyboard, has issued a
read request and is waiting for something to happen. When
you type a single character on the keyboard, it will be echoed on
the screen. The character has left your keyboard, traveled into
the machine and been sent automatically by the kernel into the
code that transmits data to your screen. Note that the process
waiting for some characters might want to inhibit the echoing
of characters and we need to provide it with the ability to do
that. There’s instant complexity here. When typing something
into the machine, you are expecting to see the character coming
back out to you. The input and output halves of the terminal
interface are inextricably linked.

We now have the character you typed sitting in the kernel.
We could decide to return the character to the waiting process
immediately, telling it that it’s got one character from you.
In fact, a process can set up the terminal interface to send
every character as it is received. This mode of operation is
called “raw,” and is used by visual editors, and these days, by
shells, too. Normal working is usually called “cooked” mode,
because it’s not raw. If you are running a program that doesn’t
want to have fine control over the terminal interface and uses
cooked mode, then the kernel will retain all your characters
until you hit the return key. The kernel will also perform line
editing, allowing your chosen delete key to remove characters
from the stored data (which again is more complex than it
seems–consider erasing a tab character that has installed a
variable number of spaces on the screen). Meanwhile the
program is doing nothing. It won’t wake up until you have
completed a line and hit return.

On early machines that ran UNIX, cooked mode was an

30 SunExpert Magazine ■ July 1998

UNIX Basics
important part of making the system appear to work quickly.
Most input was done in cooked mode and most of the time
the machine was waiting for a user to hit return. Each user
received a fast response to their typing because each single
character was echoed back quickly by the kernel.

Raw mode means the system has to do much more work,
waking up processes and passing single characters in both
directions between the processes and their terminals.

When you hit a return in cooked mode, the kernel will send
all the stored bytes to the process, waking it up and supplying it
with a complete line of pre-edited data. The process will start to
run and deal with the information that you have typed. What
happens then? It would be possible to implement the interaction
so that the kernel will only accept characters when a process has
issued a read request and is waiting for some input. Users of
PCs will know that this is very annoying. The machine appears
dead while data processing takes place. Control is finally return-
ed to the user who is able to type more text.

On UNIX, the terminal interface will continue to accept
characters even if there is no process ready to take the data
from the kernel buffers. If the kernel input buffers get full and
still no process has appeared to read the data, then the kernel
will “beep” at the user and refuse to store any more characters.
Incidentally, in cooked mode, the kernel continues to return a
line of data to any calling process, even if it’s got more than a
line stored in its buffers.

The keyboard interface also supports a great many configur-
ation options. First, it understands a set of control characters
mapping onto UNIX signals that are sent to processes, which
are talking to the terminal. Second, you can force the terminal
interface to send an end-of-file indicator, which you will recall is
a read request that returns zero bytes. Control-D is usually used
to mean this. I still use this character to exit from shells rather
that typing “logout” or “exit.” When I type Control-D, my shell
sees an end-of-file indicator and knows that it’s time to exit.

UNIX also has support for delays that can be automatically
inserted by the terminal device driver for certain character
sequences. These delays are of less importance these days
because we all use fast electronic devices to see the output from
our computers. But the delays are there to provide support for
devices that take time to settle when the printing head zooms
back across the paper and the platen moves it up one line.

Finally, you can make the terminal interface react to a pair
of characters that control data flow, known as the XON/XOFF
protocol. The output interface will stop sending characters
when the input side receives a Control-S character, and will
restart when a Control-Q arrives. The input side can also use
the protocol to control its own buffers, sending a Control-S
when they are getting full and a Control-Q when they have
drained to an acceptable level.

A flow-control protocol is needed because terminal lines have
become a common way of connecting random serial devices to
a computer. Serial devices will range in complexity from other
computers down to the humble mouse. Serial lines were often
used to connect computers together in the days before local area
networks were invented. Of course, using serial lines to carry
network packets is still done and many people use serial lines

connected to modems to carry Internet traffic today.
I’ve managed to stray a long way from the simple data

stream model that I talked about above. Data streams are used
by naive programs that will not change any settings on the
terminal interface. Programs that use the configurable options
of the interface know they are dealing with a bidirectional
serial line and are programmed appropriately. Such programs
are not seeking device independence. The real trick is that the
terminal device interfaces \fIcan\fP support data streams,
and do so in the default case.

The File System
When Ken Thompson designed the UNIX file system

in the early 1970s, he created “special files”–names in the file
system address space that map onto physical devices. This
completes the illusion of device independence on UNIX. All
devices are addressed as if they were files. If you want to save
the output of a program on disk, you simply point the output
channel of the program to the file. If you want to print the
output, then you point the output channel of the program
to a special file that connects to a device driver for the printer.
The device driver supports the data stream model and prints
any data it is sent.

The key here is all programs are coded with the same set
of system calls that read or write data streams. If you change the
output destination of the program to point to a printer’s special
file, then the same system call in the same compiled binary will
send output to that peripheral. The kernel recognizes the output
file is special and calls the appropriate device driver routines
when the process asks to write some data.

Also, tying a device to name in the file system makes it
easier for programs that are not device independent to acquire
access to the device. Such programs use the same set of system
calls that are normally employed to deal with regular files,
except they will use some extra system calls to configure the
device interface.

Of course, special files are also subject to the same access
control rules that apply everywhere else on the file system.
By setting permissions appropriately on the files themselves,
we can permit or deny access by individuals or groups on the
machine. So, for example, it’s possible for a user to use a stan-
dard data stream copy command like cat to send data to a
printer. However, if we have a line printer spooler, we don’t
want users to circumvent the order of print jobs in the spooler
queue. Rather than allowing anyone to write to the printer, we
ensure that only the spooler system has access. We make use of
the standard UNIX ideas of ownership and set appropriate file
access permissions on the printer special file.

Should we need to, we can give known programs access
to files using the UNIX notion of the setuid program. A
setuid program has a bit set in its file description information.
The bit tells the kernel that when the program is run, it should
have the same access rights as the owner of the file in which the
command lives. Thus, we can give a particular program special
rights to access a file. A normal program will be run with the
access rights set to the user who is running the command.
Placing a setuid on a program’s executable file is often used

32 SunExpert Magazine ■ July 1998

to allow that program to access devices that wouldn’t normally
be accessible. For example, the df command tells you how
much free space there is on a disk. To return accurate results,
the program needs to delve into the special device used to
address the disk. However, having the disk device open to
all would circumvent system security, so the df command is
setuid to permit it to look at the parts of the disk structure,
obtaining the information that it needs.

The UNIX file system model means that “everything” on
the computer can be addressed and accessed as a name in the file
system address space. The model has been extended by success-
ive sets of programmers. For example on Solaris, we have the
/proc file system that places a name in the file system for every
process that’s running on the machine. Each running process is
represented as a directory, while files within the directory supply
information about the process.

The /proc file system provides a simple mechanism for one
process to inspect the memory of another. It’s not unusual to
wish to have this ability. In fact, we normally want to prohibit
any process from accessing another’s address space for both se-
curity and program safety reasons. Before the invention of the
/proc file system, processes used several ad hoc methods to
look at the address space of other processes. The methods em-
ployed a special file that mapped onto the virtual memory
maintained by the kernel and meant that the programs doing
the work of accessing information needed operation system and
processor specific knowledge.

So when ps prints the command name or other inform-
ation about processes on the system, it does so by accessing the
/proc file system and not by delving messily into the memory
of another running process. Incidentally, the ownership of files
in /proc is also used to prevent the file system from being
used as a back door by me to look at your programs.

Finally…
One of the reasons UNIX is surviving is because it imple-

ments simple models of how computing should be done. The
models are easily understood and make it easy to write UNIX
programs. Because the models are simple and coherent, it’s also
easy to see why and where you need to break away from the
model and do something special. I suspect that UNIX is also
surviving because it’s had a tradition of adapting to whatever
needs are thrown at it. “Never having to say no” is actually a
good recommendation for anything.

PS. I must apologize to my readers (and also the brace of
Jeffs Copeland and Haemer–see Page 57) for failing to make
any mention of “bazaar” in this article. I did try, honest. But,
I did manage to get a “cathedral” or two into the text. ✒

Peter Collinson runs his own UNIX consultancy, dedi-
cated to earning enough money to allow him to pursue
his own interests: doing whatever, whenever, wherever…
He writes, teaches, consults and programs using Solaris
running on a SPARCstation 2. Email: pc@cpg.com.

SunExpert Magazine ■ July 1998 33

UNIX Basics

	Device Independence
	Data Streams
	Serial Devices
	Terminals, Keyboards and Screens
	The File System
	Finally...

