
UNIX Basics
by Peter Collinson, Hillside Systems

22 SW Expert ■ March 2000

ST
EP

HE
N

SC
HI

LD
BA

CH

To Quote or not to Quote
II

was engaged in the difficult exer-
cise of deciding what to write this
month, when I was saved by Siva-

ram Neelakantan, who sent me email
asking a question about some examples
in Kernighan and Pike’s excellent book,
The UNIX Programming Environment
(see “Further Reading,” Page 27).
Sivaram was working through the
book and needed a little explanation.
The email gave me the chance to pull
the book from my shelf and look at it
again. For a book written in 1984, it’s
still completely relevant. If you don’t
have a copy, then put it on your present
list for your next available festival of
receiving goodies.

Sivaram’s question concerns quot-
ing characters in the shell, making
sure the commands you run are sup-
plied with the correct arguments. The
topic touches on the way that UNIX
systems work, and I think every UNIX
user needs some understanding of the
mechanics to help clarify why things
are the way they are.

UNIX was designed to allow users
to invoke commands by typing charac-
ters into a program whose job is to
launch commands. The program is
called the user’s “shell” because it’s the
outer casing of the operating system,
providing an interface to allow the user
to get their job done. At the time UNIX
was designed, it was a curiosity that the
user’s shell was a normal program with
no special privilege. Up to that point
in most operating systems, the functions
of the shell were provided as part of the
operating system, as a top layer of the
onion skin, as it were.

UNIX threw away the notion of
onion skins and the system is essen-
tially two levels: the kernel, which is
resident all the time in the memory
of the machine, and above that we
have many user processes. The kernel
is responsible for controlling the hard-
ware and providing a standard set of
interfaces as “system calls” to the user
processes. Essentially, the kernel pro-
vides support for the way each user

process communicates with the outside
world. For example, the kernel main-
tains file system structure. Processes use
system calls to access files and are able
to deal with them as linear sequences
of bytes without worrying about how
files are implemented, or where the
blocks of each file are actually placed
on the disk.

The kernel also provides support
for processes, generating an illusion of
how the world works that’s often called
the “process model.” A keystone of the
model is that processes think they are
a single program running in an empty
machine. This virtual machine has
memory for storing the binary code
of the program that makes the process
work, and also for storing any data the
process may use. Since the beginning,
UNIX has been able to share the code
sections of processes, so if there are
five shells running, there will be only
one live copy of their code resident in
the machine.

User processes are all “equal,” that

UNIX Basics
is they are all programmed to the same model and compete
for system resources equally. As George Orwell points out in
Animal Farm , it’s a feature of human existence that “some are
more equal than others.” This is true of processes run by the
root user, we give such processes the ability to circumvent
system security that is provided by the file system.

Creating New Processes
We know that a live UNIX system is a resident kernel and

a bunch of running user processes. Any process can use the
appropriate system calls to create a new process and cause it
to run a new program. The first step is for a process to use
the fork() system call. It creates two identical processes,
both running in parallel in the machine. There’s a slight
difference between the two processes: the process that invok-
ed the fork()call, the parent , is told the process ID of the
new process when the fork()call returns, while the new
process, the child , is given a zero return value from fork.
Because both the parent and the child are running the same
code, the difference in the returned value allows the pro-
grammer to create code that will be executed in only one
of the two processes.

Actually, on some occasions, the fork()call is the end
of the story. There are several applications where a program
wants to replicate itself. For example, Web servers often run
several instances of themselves to ensure that there is always
a process listening for a new request for data.

If the process wants to start a completely different pro-
gram running, then the child portion of its code will use
the exec() system call to inform the kernel of this desire.
The system libraries provide several flavors of interface for
the exec()call, if you are interested, then

$ man -s 2 exec

will supply the complete story. I’m avoiding the full gritty
details here for simplicity. The basic exec system call has
several arguments. The first argument is the pathname of the
file that contains the binary of program that is to be loaded.
The remaining arguments are text strings that are passed into
the running program when it is started by the kernel.

The file that contains the binary that is to be loaded must

have its permissions set up to allow execute access for the user
that owns the process doing the exec()call. If the permis-
sions are OK, then the kernel will dismantle the process
image that’s using the exec()call and will load the new file
into memory. The new process will have the same process
ID as before, and will inherit several aspects of the process
model, such as extant open files for its standard input, out-
put and error channels.

Immediately before the new process begins running, the
program arguments from the exec call are placed into the
new process in a known place so that it may access them if
it wishes. The process sees a count of the total number of
arguments that have been passed, named in most literature
as argc, and an array of strings, named argv. This allows
us to pass text strings from parent to child, and for the child
to interpret them in any way that makes sense to the program-
mer. Incidentally, the first string is conventionally the name
of the command being invoked. Because the argument strings
are accessed by an array, and arrays in the C language are
numbered from zero, programmers think of this as the
“zeroth” argument.

Shells
OK. We have a mechanism to create new processes and

the ability to pass argument strings into the new running
program. How does a shell use this? As I said, a shell is not
a special program. Like many other programs, UNIX shells
read a line of text typed in by the user, do something with
the text and then loop waiting for another line. In the sim-
plest case, shells treat the text as a command name and a set
of arguments to that command. Interpretation of the text is
done using a set of inbuilt rules. Once the command has been
determined, the shell will fork to generate a new copy of
itself, create all the arguments for the exec system call and
start the process the user requested.

Generally, the parent shell will wait patiently for the new
child process to finish before attempting to read another line
from the terminal. I say “generally” because if we end the
input line with an ampersand, then the parent doesn’t wait.
Once the fork()has been called, and the child is busily
setting itself up, the parent will read another line from the
terminal.

I said that when you type the line of input, the shell inter-
prets it according to its own set of inbuilt rules. The rules
have not changed a great deal since the days of the first shell.
Shells take the line of input from the user and break it into
“words” that are separated by spaces or tabs. The first word
on the line is taken to be the name of the command, the
remaining words are each separate arguments that are passed
into the command. So, when we type

$ cp one two

the cp word is the command name, and the shell will locate
the command file that goes with the name. The remaining
strings are passed into the cp command as arguments; the
zeroth argument will be cp, the first argument will be the

24 SW Expert ■ March 2000

Like many other
programs, UNIX
shells read a line
of text typed in
by the user, do
something with
the text and then
loop waiting for
another line.

string one, and two will be the second argument. The cp
command interprets the first argument as the source file for
copying and the second as the name of a destination to which
to copy the data.

Of course, the shell can do more than just take our input
and process it. The earliest form of additional processing pro-
vided by the shell was shell globbing, the expansion of stars
and question marks in file names. It gained its name from the
file /etc/glob, which was the discrete program used as a
shell “helper” in early systems. When the shell encountered a
star or question mark, it ran /etc/glob to do the work of
expanding file names.

It’s important to understand that the globbing function
happens before the exec system call is made. For example,
when you type

$ echo a*

the shell looks for all the files starting with “a” in the current
directory, sorts the resulting list into alphabetic order and
passes the complete list of file names as parameters into the
exec call. Expanding the names in this way means that file
name expansion doesn’t need to be coded into every com-
mand, it exists only once in the shell. However, this method
can sometimes have confusing results if you are not clear
when it happens as the process is created.

Similarly, I/O redirection happens in the child code after
the fork() and before the exec(). When we type

$ echo a* > out

the shell arranges that the echo command is run with it’s
standard output set to the file out. Setting up the new output
channel happens after the fork and before the exec. A side
effect of this mechanism is that the destination out file is
created before the command is executed. This can sometimes
be counter-intuitive. An attempt to add the contents of one
file to the end of another might reasonably be written as:

$ cat a b > a

but this fails (usually horribly) because the shell will open a
new file called a before the cat command is executed. Open-
ing a new file with the same name as one that exists results
in truncating the file to zero length. The cat command will
now copy a zero-length file a and the contents of b to a. Bill
Joy implemented an option (the noclobber option) in csh
to prevent the I/O redirection option from destroying an
extant file, so I guess something horrible happened to him
at some point.

Quoting
Using white space to separate the words on a command

line is convenient largely because the space bar is a large
friendly area at the bottom of the keyboard. In fact, in most
shells, the word-separation characters are specified in a shell
variable, allowing the user to change the character set should

they wish. However, most people stick to the default.
Generally, the use of white space as a separator has meant

that, on UNIX, we don’t use file names that contain embed-
ded spaces. You are at liberty to create a file with any name
you wish, and you are able to create files with embedded
spaces, however, to handle them with the extant shells you
need to know how to include a space in the middle of an
argument string for a command.

As this article has progressed, we’ve also begun to build
up a list of special characters (meta-characters) that the shell
uses for its own purposes: *, ?, &, <, > and so on. There are
more. For instance, I’ve not mentioned shell variables that are
invoked by placing a dollar symbol before the variable name.
For example, for Bourne shell and derivatives

$ DEST=/usr/share/man

$ ls $DEST

or for csh and derivatives

% set DEST = /usr/share/man

% ls $DEST

In both cases, the shell expands the variable “in place” to be its
contents before the ls command is executed. The command
that’s run is

ls /usr/share/man

It’s clear that a method of quoting is required to allow us to
pass all the characters that form part of the shell’s syntax into
commands, while stopping the shell from doing what it nor-
mally does with the characters. There are, of course, several
methods of doing just this.

UNIX uses the backslash character in many applications to
be an escape character. It usually means “take the next charac-
ter literally, don’t treat it as a special character.” All shells per-
mit the use of backslash in this manner. For example,

$ echo \$DEST \> fred

will print

$DEST > fred

Things begin to get more exciting when you are using a com-
mand that uses meta-characters. Let’s try and find the values
for the dollar symbol from /usr/pub/ascii using grep.
Our first attempt might be

$ grep $ /usr/pub/ascii

The shell will leave a single dollar character alone and will pass
it into the grep command unchanged. However, if you try
this, you’ll find that it lists all the lines in the file. (Pause here
and see if you know why, before reading on.)

The argument to grep is a regular expression, and the

SW Expert ■ March 2000 25

UNIX Basics

UNIX Basics
dollar sign is one of the meta-characters used in a regular
expression match: $ matches the end of the line. By defini-
tion, each line in the file has an end-of-line character, so this
regular expression matches all the lines. The single $ argu-
ment won’t do what we want, we need to use backslash to
get a dollar into the program:

$ grep \$ /usr/pub/ascii

This again lists all the lines in the file. Why? Well, when the
shell sees a backslash it reads the next character and discards
the backslash, so this command is essentially equivalent to
the first attempt. We need to get a backslash and a dollar sign
into grep:

$ grep \\$ /usr/pub/ascii

The shell passes \$ as the match expression into grep and the
command will find all the lines containing a dollar symbol.

Using backslash like this can get tedious, especially in long
strings. It would be better to have a way of quoting chunks of
text without having to worry about what it contained. Shells
provide two ways of doing this. First, you can enclose some
text in single quotes:

$ echo '$DEST > fred'

The output from this is the same as the previous echo exam-
ple, however, the source is clearer and less cluttered. The con-
tents quoted by the string will be passed intact through to
the command as a single argument after the quotes have
been removed. The only character that cannot appear inside
a single-quoted string is a single quote. However, quoting
in shells is an area of great divergence, different shells imple-
ment things in different ways. For example, consider the
following command:

/bin/echo 'a\\b'

I’m using /bin/echo to avoid the use of any shell built-in
echo function. Because single quotes are supposed to pass
things through unchanged, then you might expect to see this
print a\\b. However, a little experimentation with the shells
on my machine produces the following:

/bin/sh: a\b

/bin/ksh: a\b

/bin/csh: a\b

/bin/bash: a\\b

I am unsure whether bash is wrong. It has probably done the
right thing, rather than simply following what the Bourne shell
did. In all the shells, the escape character is actually not useful
inside single quotes. A backslash cannot be used to insert a
single quote. On balance, I’d prefer to see the shells leave my
double backslash alone.

There are occasions where you would like to pass a single

argument to a command, perhaps including spaces, but have
the benefit of variable substitution. Using double quotes
around a string achieves this, so

$ echo "$DEST > fred"

will print

/usr/share/man > fred

assuming that the content of DEST is unchanged from the
previous setting above. You can use double quotes to force the
quoting of a single quote:

$ echo "It's a single quote"

Another useful trick is to realize that shells are text-processing
languages and will perform string concatenation for you. I
often use combinations of quotes to ensure that complex and
lengthy strings are left alone by the shell, except where I want
things to happen. For example,

$ echo '$DEST = '"$DEST Doesn'"'t it?'

will generate one argument to the echo command. Combina-
tions can become indecipherable if you’re not careful. Most of
these tricks are only needed when you are attempting to get
complex statements involving meta-characters into some of the
super tools like sed or awk.

When you are creating complex scripts for the super tools,
then you should avoid using csh for your scripting language.
One reason is that the Bourne shell and its derivatives handle
newline characters in a much more flexible manner. To get a
newline into a quoted section in the Bourne shell, you just
include it:

echo 'Here is a

newline'

You’ll find that csh is line-oriented and insists on a backslash
before the newline character to achieve the same effect. Even
then, things don’t work too well. If I am writing awk scripts

26 SW Expert ■ March 2000

Quoting in
shells is an
area of great
divergence,
different shells
implement things
in different ways.

for the Bourne shell, I’ll often write things like the following:

awkprog='

{sum = sum + $5}

END { print sum}'

/bin/awk "$awkprog"

This lays out the awk program in a readable manner, and
passes it into the command cleanly in a shell variable. Inci-
dentally, the command is intended to be used to count the
bytes in a directory:

$ ls -l | sh aw

where aw holds the script above. The awk command in the
script processes data from the standard input channel of the
script. If you attempt to do this in csh, then you need to
add backslashes at the end of all the newlines in the single-
quoted section:

set awkprog = '\

{sum = sum + $5}\

END { print sum}'

/bin/awk "$awkprog"

But the program blows up when the awk command is invok-
ed. The sad fact is csh doesn’t like embedded newlines in
variable contents.

You’ll also find that combinational quoting in csh is pretty
broken. Again, things that you can do trivially in the Bourne
shell just don’t work in csh. For example,

echo "dollar \$"

works in sh, but not in csh.
I gave up writing scripts in csh aeons ago, for these

and other reasons. If you want to learn to write scripts, use
the Bourne shell. Your scripts should be portable to all the
machines in the world. One caveat: some of the Bourne
shell clones haven’t implemented quotes in exactly the
same way as the original program.

Further Reading
The UNIX Programming Environment, by Brian W. Ker-

nighan and Rob Pike, is published by Prentice Hall Inc.,
1984, ISBN 0-13937-681-X. More reasons to hate csh
can be found in Tom Christiansen’s csh article reproduced
in UNIX Power Tools, by Jerry Peek, Tim O’Reilly and Mike
Loukides, published by O’Reilly & Associates Inc, 1997,
ISBN 1-56592-260-3. ✒

Peter Collinson runs his own UNIX consultancy, dedicated to
earning enough money to allow him to pursue his own interests:
doing whatever, whenever, wherever… He writes, teaches, con-
sults and programs using Solaris running on an UltraSPARC/10.
Email: pc@cpg.com.

SW Expert ■ March 2000 27

UNIX Basics

mailto:pc@cpg.com

	To Quote or not to Quote
	Creating New Processes
	Shells
	Quoting
	Further Reading

